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Definitions  
Osteoarthritis  Whole organ joint disease of cartilage deterioration, joint space 

narrowing, pain and disability where the only viable therapeutic 

option may be joint replacement 

Meniscus C-shaped fibrocartilagenous tissue in the knee that attaches at two 

distinct anterior and posterior attachments into the tibial plateau of 

humans 

in vitro  Procedure performed in a controlled laboratory environment 

in vivo   Experimentation using whole, living organism  

mechanotransduction Mechanism by which cells turn mechanical stimuli into a chemical 

response 
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Abstract  
Nearly half of the US population faces the risk of developing knee osteoarthritis (OA). 

Both in vitro and in vivo studies can aid in a better understanding of the etiology, 

progression, and advancement of this debilitating disorder. The knee menisci are 

fibrocartilagenous structures that aid in the distribution of load, attenuation of shock, 

alignment and lubrication of the knee. Little is known about the biochemical and 

morphological changes associated with knee menisci following altered loading and 

traumatic impaction, and investigations are needed to further elucidate how degradation 

of this soft tissue advances over time. The biochemical response of porcine meniscal 

explants was investigated following a single bout of dynamic compression with and 

without the treatment of the pharmaceutical drug, anakinra (IL-1RA). Dynamic loading 

led to a strain-dependent response in both anabolic and catabolic gene expression of 

meniscal explants. By inhibiting the Interleukin-1 pathway with IL-1RA, a marked 

decrease in several catabolic molecules was found. From these studies, future 

developments in OA treatments may be developed. The implementation of an in vivo 

animal model contributes to the understanding of how the knee joint behaves as a whole. 

A novel closed-joint in vivo model that induces anterior cruciate ligament (ACL) rupture 

has been developed to better understand how traumatic injury leads to OA. The menisci 

of knees from three different groups (healthy, ACL transected, and traumatically 

impacted) were characterized using histomorphometry. The acute and chronic changes 

within the knee following traumatic impaction were investigated. The works presented in 

this dissertation have focused on the characterization, implementation, and development 

of mechanically-induced changes to the knee menisci. 
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Chapter 1 - INTRODUCTION 
 

Nearly half of the US population faces the risk of developing knee osteoarthritis (OA), 

which causes disability, pain and hospitalization. For those over the age of 65, joint 

disease accounts for half of all disabilities. As it is projected that elderly will account for 

25% of the population by the year 20201, the importance of understanding the etiology of 

OA is evident in order to prevent future disease risks. A plethora of variables are thought 

to influence the onset and progression of knee OA, including obesity, gender, age, and 

genetics, as well as traumatic injury to the tibiofemoral joint1, 2. The Center for Disease 

Control and Prevention recently reported obesity as the strongest known contributor to 

the risk of knee OA, due to extra weight overloading the joint. Pathological OA is 

defined as severe, localized cartilage damage and fibrillation and characterized by an 

imbalance in catabolic and anabolic activity of chondrocytes3. Articular cartilage is 

avascular, aneural, alymphatic, and moderately cellularized, resulting in slow matrix 

turnover and reduced affinity for repair following damage3.  

 

Although the mechanisms of OA are somewhat unclear, long-term investigations of joint 

damage and subsequent deterioration have encouraged scientists and clinicians to 

investigate the role of the menisci in the etiology of the disease4-7(Figure 1-1). The 

menisci are multifunctional tissues in the knee that aid in tibiofemoral alignment, 

lubrication, load distribution, shock absorption, and protect the underlying cartilage. It is 

well documented that either complete or partial removal of the menisci will result in OA2, 

8, 9, yet the mechanisms responsible for meniscal degeneration are currently unknown. 

Both partial meniscectomy and anterior cruciate ligament (ACL) transection lead to 

excessive mechanical loading and disruption of structural proteins within the meniscus10. 

It has been observed that joint disruption leads to the production of matrix degrading 

enzymes, including nitric oxide (NO) and metalloproteinases 11-13. Several studies have 

demonstrated a reduction in joint space due to meniscal degradation prior to any cartilage 

damage8, 14-16. Therefore, it is imperative to investigate the mechanism of meniscal 
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degeneration resulting from altered loading and a means by which this degeneration can 

be slowed or prevented.  
 
Overview of the Knee 
The knee is a complex, condyloid, synovial joint located in the lower extremity, and is 

responsible for weight-bearing and mobility activities. The knee provides shock  

attenuation from impact loading during walking, running, and jumping. The 

patellofemoral joint is comprised of a sesamoid bone (the patella) which articulates in the  

femoral groove. The patella acts to protect the deeper synovial joint from impact. The 

tibiofemoral joint is a complex hinge joint that is encapsulated by synovial tissue, aiding 

in joint lubrication. The tibiofemoral joint incorporates many soft tissue structures to 

maintain knee stability. The anterior and posterior cruciate ligaments, as well as the 

biarticulate nature of the hamstrings and quadriceps muscle groups, contribute to the  

prevention of frontal plane translation (subluxation) between the tibia and femur. Sagittal 

translation of the knee is inhibited by medial and lateral collateral ligaments. The 

fibrocartilagenous structures atop the tibial plateaus, known as the menisci, contribute to 

dynamic knee stability. Although the primary motion of the knee is flexion and 

 
Figure 1-1. Anatomy of the knee and the progression of osteoarthritis. Illustrations 
provided by Nucleus Medical Media, copyright 2010. All rights reserved, used with 
permission. 
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extension, some interplay in pronation and supination, as well as internal and external 

rotation, occurs. Excessive sagittal or transverse planar motion, however, can result in 

ligament or meniscal tear, bone bruising, muscle injury, or other problems17-23. 

 
Many factors can contribute to malalignment of the knee. For example, cruciate ligament 

tears demonstrate increased joint laxity between the tibia and femur, resulting in 

diminished proprioception, delayed reflex responses to anterior tibial translation, and 

changes in neuromuscular control strategies during dynamic maneuvers24-26.  This joint 

laxity also contributes to altered loading patterns on the meniscus27. The progression of 

osteoarthritis (OA), also known as degenerative joint disease, is likely influenced by the 

altered kinematics of the knee joint. The maintenance of healthy stabilizing structures of 

the knee has been heavily emphasized in the literature2, 3, 13, 27-38.  

The Development of the Knee and Meniscus 

The development of the knee has been investigated for over half a century39-42. Normal 

joint formation consists of two distinct phases: blastema differentiation and joint 

cavitation. The human fetus begins to develop limb buds around 3weeks after 

fertilization, and differentiation of the femur, tibia, and fibula ensues around 6weeks39. 

Upon cavitation, two distinct articulating surfaces are formed43, and femoral condyles 

begin to take shape 7weeks after fertilization. Within the next week of development the 

lateral menisci begins to appear and demonstrate high cellularity39. By 14weeks, the 

anterior horn of the lateral meniscus demonstrates parallel-aligned spindle cells whereas 

the cells of the medial meniscal anterior horns are randomly arranged (Figure 1-2;40). 

Organizational changes in the menisci occur during the next few weeks of development 

(Figure 1-2;40).  
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Figure 1-2. Histology of the meniscus in human fetuses. The anterior insertion of the 
fetal menisci from 14 (a,b), 17 (c,d) and 25 (e,f) weeks of gestation. Bars, 100 mm. HE 
staining. From Fukazawa40 with permission. 
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As the menisci develop in utero, the morphometry and relationship of this tissue to tibial 

plateau changes40, 42. Specifically, the meniscus is highly cellularized with large nucleus-

to-cytoplasm ratios during prenatal development with blood vessels identifiable 

throughout the substance of fetal menisci44, although vasculature is most dense in the 

outer third region42. From prenatal to postnatal, there are no sharp changes in the 

morphometry of the menisci, but it progressively becomes less cellular, devascularized, 

and more collagenated (Figure 1-342). During adolescence, vasculature continues to move 

toward the outer third of the menisci, yet vessels can still be seen through the inner zones 

in the 10-11yr old menisci42. However, in the mature adult, blood vessels are only found 

in the periphery of the menisci42, 44.  Proprioceptive characteristics of the menisci lie in 

the perimeniscal innervation as well, as large nerves associated with blood vessels 

circumferentially line the menisci44. Both anterior and posterior horns in adult menisci 

are greatly innervated as well, aiding with vasomotor control, identification of pain, and 

likely postural/protective muscular reflexes44, 45.    

 

Immobilization has been shown to play a critical role in the development and 

homeostasis of the knee joint soft tissues43, 46-50. In chick embryos, immobilization does 

not influence meniscal condensation, but does result in meniscal cell degeneration and 

eventual meniscal disappearance during embryonic development43. In the mature lapine 

menisci, permeability has been shown to decrease following increased durations of 

immobilization50. Additionally, lapine menisci subjected to meniscal injury and 

subsequent immobilization demonstrated a reduced affinity for healing compared to 

remobilized animals51. However, traditional recommendations in rehabilitation following 

meniscal repair suggest 4-6weeks of decreased mobility52. Thus, the debate of whether or 

not to immediately remobilization or immobilization the knee following meniscal surgery 

is still clinically argued. 
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Figure 1-3. Photomicrographs of developing menisci (hematoxylin and eosin, x50). Note 
the progressive decrease in cellularity and increase in intercellular matrix with increasing 
maturation. From Clark et al42 with permission. 
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Composition & Structure of the Meniscus 

The menisci are C-shaped, fibrocartilagenous tissue that lies between the femoral 

condyles and the tibial plateau. A coronal section of the meniscus is mostly triangular, 

with the outer zones being thicker than their inner counterparts (Figure 1-4). The superior 

surface, which provides a frictionless articulation for the femoral condyles, is concave-

shaped, whereas the deep surface, resting atop the tibial plateau, is flat. The ends, or 

horns, are attached to the tibial plateau via ligamentous structures. These horns prevent 

the meniscus from moving too freely in the joint but also allow the meniscus to stretch 

radially during movement and loading.  

 
Figure 1-4. Schematic of medial and lateral menisci, with coronal cross-section.  
 

The structure of the meniscus is created by the interaction, density, and orientation of 

type I and type II collagen and proteoglycans, which are the main constituents of the 

extracellular matrix. The outer region of the meniscus consists of radially-oriented type I 

collagen fibers, which provides tensile strength from hoop stresses during loading53. This 

region is vascularized and innervated54, providing an ability to heal itself upon injury. 

The inner region, subjected to compressive loads, contains nearly all of the type II 
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collagen of the tissue53, 55. The cellular density and phenotype vary throughout the 

menisci as well. A higher concentration of ovoid-shaped and fusiform cells, similar to 

chondrocytes, reside in the deep regions and inner zones of the tissue56, 57. Spindle cells, 

similar to fibroblasts, are located on the outer regions and superior surfaces of the 

meniscus57. The generalized term “fibrochondrocytes” is often used to refer to the entire 

cell population of the menisci. However, recent work by Verdonk et al has characterized 

the phenotype of knee meniscal cells58. Three distinct hematopoietic (CD34-positive) cell 

populations are observed in adult human menisci, particularly in the outer vascular region 

(platelet endothelial cell adhesion molecule-1 [PECAM-1] negative), the superficial zone 

(PECAM-1 negative), and synovial sublining tissue regions (PECAM-1 positive)58. 

Recently, multi-lineage differentiation of fibrochondrocytes has been explored in order to 

better understand the healing capabilities of the meniscus, as progenitor activity may aid 

in migration, proliferation, and repair at injury sites59-62. The role of transforming growth 

factor-β (TGF-β) on meniscal fibrochondrocytes has been shown to promote 

chondrogenesis in vitro59, 62, 63.  Fibrochondrocytes from immature bovine have 

demonstrated culture-dependent behavior62. Specifically, fibrochondrocytes have shown 

differentiating capabilities to adipogenic and osteogenic culture media64. Such behavior 

may depend on the region from which fibrochrondrocytes were derived62.  Additionally, 

the presence of mesenchymal stem cells in the meniscus was recently reported and likely 

influences the differentiating capabilities of fibrochondrocytes65.  

 

A key component of the menisci is proteoglycans. By binding, organizing, and retaining 

water molecules in the matrix of the meniscus, proteoglycans play a biophysical role in 

contributing to the tissue’s biphasic characteristics66. Oscillatory fluid flow, as observed 

with water moving in and out of the matrix during walking, provides a mechanical 

environment that prompts meniscal cells to produce glycosaminoglycans via a calcium-

dependent pathway67. Proteoglycans consist of a large core protein with attached, 

negatively-charged, repeating sugar chains, called glycosaminoglycans. A detailed list of 

major proteoglycans and glycosaminoglycans of the menisci are listed in Table 1-1.  

 



www.manaraa.com

9 
 

The most abundant proteoglycan of the meniscus is aggrecan. Aggrecan is a 

macromolecule that remodels often and has well-characterized multi-domains that has 

been extensively studied for its role in articular cartilage68-70. The domain organization 

and structure of aggrecan is illustrated in Figure 1-570. The aggrecan core protein itself is 

approximately 220kD in size, and the complex aggregated monomer with 

glycosaminoglycans link to a single hyaluronan backbone via the N-terminal globular 

domain (G1) and link protein71. The link protein is analogous in structure to the G1 

domain, and is responsible for linking the G1 region of aggrecan to the HA backbone72.  

 
Figure 1-5. Schematic representation of the domain organization (a) and structure (b) of 
human cartilage aggrecan and depiction of the specific peptide bonds cleaved in situ in 
articular cartilage by aggrecanases or MMPs. Specific peptide bonds hydrolyzed in situ 
by MMPs or aggrecanases, and the position of these sites within the aggrecan core 
protein, are indicated by arrows. From Caterson et al70 with permission. 
 
The interglobular domain (IGD), which is approximately 150 amino acids in length, 

attaches the G1 domain to the rest of the molecule71, and is subject to proteolytic 

catabolism potentially due to its structure71, 73. Depending on the aggregation of the 

molecules, such a macromolecule could have a molecular weight of over 200 million 

kD69. Aggrecan has multiple cleavage sites (Figure 1-5), which can occur in the IGD or 

sulfate-rich regions, and can be cleaved by matrix metalloproteinases (MMPs) and 

aggrecanases70, 71. Small leucine-rich proteoglycans (SLRP) also play important roles in 

the menisci74. Although aggrecan is evenly distributed throughout the menisci, SLRPs are 

more abundant in the inner two-thirds (avascular) zones75. Perhaps because of their small 
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size, SLRPs are more resistant to proteolytic cleavage than aggrecan, and are known to 

interact with and protect collagen fibrils of cartilage76. 
 
Table 1-1. Proteoglycans and glycosaminoglycans of the meniscus. 

Macromolecule Structure Ref 

Proteoglycans 

Aggrecan 
220kD- consists of protein core, CS and 

KS chains, link protein 
69 

SLRPs 
Include fibromodulin, decorin, biglycan, 

lumican, keratocan 
74 

Glycosaminoglycans 

Chondroitin 6-sulfate 

 

55, 

77 

Chondroitin 4-sulfate 

 

55, 

77 

Dermatan sulfate 

 

55, 

78, 

79 

Keratin sulfate 

 

55, 

77 

Hyaluronic acid 

 

78 
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Because the compressive properties of menisci are dependent on the fixed negative 

charge and sulfation of glycosaminoglycans on the aggrecan monomers80, the attachment 

sites of such glycosaminoglycan chains to the aggrecan core protein are of particular 

interest. Glycosaminoglycans are added to the aggrecan core protein intracellularly, 

although each glycosaminoglycan attaches to distinct locations by means of distinct set of 

glycosyl transferases69. Chondroitin sulfate (CS) transferases attach the linkage region to 

serine in the Ser-Gly sequence and elongate via glucuronic acid (glcA)- N-

Acetylgalactosamine (galNAc) repeating disaccharide69.  During elongation, sulfate 

esters become added to the 4- and 6- positions of the hexosamine residues. Upon 

elongation completion, galNAc residues cap the finished chains. Keratin sulfate (KS) also 

substitutes the aggrecan core protein, wherein KS can attach to both KS and CS regions. 

Glycosaminoglycan chains of KS are added to salactose residue on oligo-branches 

containing galactose β1 (galβ1)-N-acetyl-D-glucosamine (4glcNAc) sequences. This 

chain is elongated by alternating gal and glcNAc residues and sulfated at the 6- position 

of galactose or N-acetylglucosamine. The finished chains are capped with sialic acid69. 

Along with the larger proteoglycans like aggrecan, smaller constituents, such as decorin 

(70kD) and biglycan (100kD), are present in menisci as well69. These small 

proteoglycans in cartilage contain dermatin sulfate (DS) chains as opposed to CS or KS 

chains, and have alternating idoA- and glcA- containing disaccharide repeats69. Another 

small proteoglycan in soft tissues is fibromodulin (30kD), substituted with only a few KS 

chains.   

 

The distribution of proteoglycans and glycosaminoglycans in both cartilage and menisci 

has been demonstrated in the literature81-83. Aggrecan is expressed more in the inner zone 

of the meniscus53. In skeletally mature rabbits, biglycan is found throughout the 

meniscus, whereas decorin is found on the periphery of cartilaginous structures84.  

The integration of woven collagen fibers and proteoglycans allow the meniscus to 

compress and distribute load to the tibial plateau during weight-bearing activities and 

return its shape following unloading.  
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Mechanics of the Knee Meniscus 
The shape, compressive and tensile properties, and biphasic nature of the meniscus 

contribute to its load distribution, lubrication, shock absorption and joint alignment 

characteristics85, 86. The meniscus attaches primarily to the tibial plateau, providing the 

tissue with unique structural properties. The alignment and structure of the peripheral 

collagen fibers in the outer third of the meniscal body (known as the red zone because of 

its vasculature nature) support hoop stress in order to aid alignment and distribute loads 

during mobility. The attachments prevent meniscal extrusion and maintain stress 

distributions of the femur on the body of the meniscus, instead of allowing the meniscus 

to displace, exposing the cartilage of the tibial plateau. The inner regions of the menisci 

(white zone due to its avascular nature) provide the tissue with compressibility and are 

cartilage-like in cell phenotype and matrix structure. 

 

The dynamic behavior of the meniscus within the joint is not well understood. The 

meniscus can be considered an anisotropic87, inhomogeneous80, non-linear79 biphasic 

material in which the solid matrix and the interstitial fluid of the meniscus dictate the 

response of the tissue to compressive loading. The matrix component of biphasic 

materials, such as articular cartilage, has been modeled as an incompressible solid 

consisting of collagen fibers, proteoglycans, and chondrocytes88. The interstitial fluid is 

modeled as an incompressible liquid88. The stress observed in soft tissues is governed by 

the interstitial pressure as it relates to the fluid and solid phases, known as the biphasic 

mixture model (Equation 1-1): 
epIσ σ= − +     Equation 1-188 

where p is the interstitial pressure, I is the identity tensor (together, modeling the liquid 

phase), and σe is the effective elastic stress (modeling the solid phase).  

 

The Conewise Linear Elastic theory, when applied to articular cartilage, has been 

successfully shown to predict experimental results in confined and unconfined 

compression as well as torsional shear88. This theory accounts for nonlinearities in the 

tissue’s tensile and compressive behavior as well as the depth-dependence of material 
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properties88. Others have used a fibril-reinforced poro-viscoelastic model of the menisci 

to simulate joint stresses in healthy and arthritic knees89. This model subdivides the 

biphasic mixture model further, separating the solid phase into fibrillar and non-fibrillar 

components89.  

 

Biphasic theory can also be applied to nanoscale modeling of biological materials90, 91. 

Nanoindentation has recently been shown to be a useful tool in understanding the 

changes in mechanical properties across biologic transition regions, and how such 

changes in properties may be associated with mineralization, collagen organization, and 

microscopic 2-D structure90, 92-94. Use of both macro- and micro/nano-scale mechanical 

testing in the future will further advance our understanding of the behavior of the 

menisci. 

 

The spatial distribution of contact pressures on the meniscus have been demonstrated in 

the literature30, 95. It is well known that removal of the meniscus results in decreased 

contact area of joint loads caused by the femoral condyles articulating directly onto the 

tibial plateau30. This results in excessive stresses on the articulating surfaces, increasing 

the wear characteristics and ultimately leading to cartilage degradation and osteoarthritis. 

Although common surgical techniques have been employed for many years to remove 

and repair meniscal tears, clinical follow-up studies have very weakly proven their 

benefit.  

Meniscal Tears  

Twisting of the knee, rupture of the anterior cruciate ligament (ACL), or degeneration of 

the meniscus can result in tear formation, progression, and reduced efficacy of the 

meniscal function (Figure 1-6). Longitudinal vertical tears are typically observed 

following traumatic injury, whereas horizontal and oblique tears are often a result of 

degenerative/age related changes to the menisci4(Figure 1-6). The derivation of radial 

tears is not fully understood4. Symptomatic osteoarthritis (OA) is typically associated 

with the degenerative progression of tears4. Meniscal injuries are typically treated 
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arthroscopically, with approximately 636,000 arthroscopic surgeries per year96. Surgeons 

typically resort to removing 25-100% of the meniscus96 or suture an existing tear using 

materials such as poly-L-lactic-acid or polydioxanone97. However, removal of the entire 

meniscus results in higher stress concentrations on the remaining meniscus and 

underlying tibial plateau30, 98. This has been suggested to lead to the deterioration of 

articular cartilage and the onset of osteoarthritis (OA)95, 99-101. The progression of OA 

after meniscectomy has been associated with the increased contact pressures on the 

cartilage due to reduced meniscal area30. Additionally, the presence of tears, as well as 

the removal of torn regions of menisci, leads to proprioceptive deficits. Therefore, 

encouraging the healing of menisci is important, and minimal removal of the damaged 

tissue has been more recently advised102. Nonetheless, nonsurgical therapies may not be 

enough, and certain tear types may eventually result in problems. For example, in the 

event that a longitudinal tear does not heal or is not fixed, it may progress into a bucket-

handle tear that can displace in the joint and lead to severe pain and joint locking103.  

Thus, understanding the mechanics, healing capacity, and treatment remedies for 

meniscal injuries is at the forefront in order to maintain and improve103 knee joint health. 

 

 
Figure 1-6. Potential tear types and red/white zones of the menisci. From Nucleus 
Medical Media, Inc with permission. 
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Mechanotransduction of the Meniscus 
Cellularized tissues can be influenced by changes to their mechanical environments. The 

effect of mechanical stimulation on cellular signaling and activity is known as 

mechanotransduction. Such responses lead to variations in production of matrix protein 

and enzyme production, which in turn influences the structural makeup of the tissue. A 

healthy, normal mechanical environment likely contributes to the constant matrix 

turnover, or homeostasis, of soft tissues3. However, a detrimental mechanical 

environment may lead to overproduction of catabolic molecules which degrade the 

matrix in which the cell resides104. The expression and production of these molecules 

may be initiated via integrin signaling or other intracellular pathways105, 106.  The 

construction and maintenance of the extracellular matrix is dependent on the health of the 

cell106. 

 

Just as bones require loading to prevent atrophy, so too do the meniscus and articular 

cartilage107-109. In an extensive review article, Griffin and Guilak discuss many in vitro 

and in vivo experiments that have demonstrated the need for dynamic compression and 

joint loading on the health of articular cartilage3. It has been demonstrated that rats have 

an apparent increase in meniscal collagen and proteoglycan content following exposure 

to treadmill exercise 110. Similarly, in rabbits exposed to antigen induced arthritis, 

continuous passive motion of the meniscus has been demonstrated to significantly 

promote anti-inflammatory mediation of cytokine activity, such as reduced cyclo-

oxygenase-2 (COX-2), matrix metalloproteinase-1 (MMP-1), interleukin-1 (IL-1) and -10 

activity, after just as little as 24 hours exposure109. Oscillatory fluid flow has been found 

to induce shear stresses on meniscal cells, which can contribute to increased intracellular 

calcium-mediated production of sulfated glycosaminoglycans67. In an in vivo lapine 

model, surgically-induced meniscal tears of the outer region demonstrated an increase in 

blood flow and vascular volume with mobilization. In the same study, rabbits subjected 

to hind limb immobilization after meniscal tears had an observed increase in angiogenesis 

only. This injury model demonstrated the vascular response of the meniscus after injury, 

which contributes to the tissue’s healing ability. Shin et al. demonstrated an increased 
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synthesis of protein and sulfated glycosaminoglycans in meniscal explants following 

dynamic compression exercises of 24h111. This study also demonstrated that mechanical 

stimulation “overrides” glycosaminoglycan and protein production otherwise inhibited by 

exogenous IL-1. 

 

Whereas unloading and disuse can be detrimental to knee joint health, overloading may 

also lead to compromised integrity and deleterious function of menisci and cartilage.  

Kessler et al. investigated the effect of running on meniscal and articular cartilage 

thickness112.  The gross regression of meniscal and articular cartilage thickness 

immediately following running was attributed to the tissues’ biphasic material properties, 

and the rate of recovery to original thickness after an hour was suggested to be a factor of 

the tissues’ permeability characteristics. However, it is still inconclusive if long-distance 

running is detrimental to the health of the meniscus. In vitro investigations of cyclic 

mechanical strain on meniscal cells have demonstrated an alteration in protein, 

proteoglycan, nitric oxide (NO) and prostaglandin-E2 (PGE-2) production113. Cyclic 

biaxial strain produced increases in NO and PGE-2 after 24h exposure. However, an 

anabolic effect of mechanical loading was also observed, with increased production of 

proteoglycan and protein. Using meniscal explants, Upton et al. also observed a 

mechanical response of fibrochondrocytes 114. After exposure to a static compressive load 

of 0.1MPa for 24h, a decrease in decorin and type I collagen gene expression, as well as 

an increase in MMP-1 gene expression, was observed. Following dynamic compression 

of explants (ranging from 0.08-0.16MPa stresses at 0.5Hz) for 24h, decorin gene 

expression significantly decreased. Fink et al. also used meniscal explants to investigate 

the effect of dynamic compression on nitric oxide production of the meniscus56. Dynamic 

compression of 0.1MPa for 24h significantly increased NO production in both medial and 

lateral meniscal explants when compared to uncompressed explants. Also, dynamically 

compressed meniscal explants expressed NO in a regional-dependent manner, with 

surface explants expressing more NO than their deep counterparts. This anatomical 

dependence may have been due to the cellular density distribution of the meniscus, with 

more cells in the superior zone able to produce more NO. These in vitro investigations 
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bring light to the mechanical influence on fibrochondrocyte activity. However, a major 

shortcoming of these experiments exists in the duration of the experiments, as it is not 

physiological to cyclically load the meniscus for a constant 24h period. Also, differential 

stress magnitudes may be present on the meniscal surface in vivo that were not controlled 

for with these experiments. Using a shorter loading exposure duration and different 

loading regime, Ferretti et al. recently investigated the effect of 4h of dynamic tensile 

forces on the expression of MMP-13, iNOS, and tumor necrosis factor-α (TNF-α), as well 

as its inhibition on IL-1β-induced cytokine expression, on fibrochondrocytes115. 

Fibrochondrocytes exposed to dynamic tensile forces observed a significant decrease in 

both TNF-α and MMP-13 expression compared to unloaded cells, which was dependent 

on the magnitude of tensile force.  Dynamic tensile forces are observed in the outer 

region of the meniscus, and the influence of this mechanical environment on inhibition of 

IL-1β-induced NO, TNF-α, and MMP-13 are significant findings.  Investigations must be 

performed on physiological mechanical loading of meniscal tissue. 

 

As previously mentioned, mechanical loading on the meniscus and articular cartilage 

regulates the amount of collagen and proteoglycans produced by these tissues; however, 

the mechanisms of regulation have not been extensively explored15, 29, 68, 107, 116. 

Djurasovic et al. investigated the effect of immobilization of beagle hind limbs on gene 

expression in the meniscus over a period of four weeks 68. In their study, they found that 

aggrecan gene expression significantly decreased in the immobilized limb, with the 

largest decrease in the posterior region of the lateral meniscus. Sulfated 

glycosaminoglycan (S-GAG) also decreased in the immobilized meniscus and water 

content increased. The biophysical dependence on loading is apparent in the maintenance 

of proteoglycans of the meniscus. Higher expression of aggrecan and S-GAG in 

nonimmobilized limbs for this study may be attributed to excessive, compensatory 

loading on the weight-bearing limbs; hence, more controlled experimental procedures 

utilizing animals without immobilization should also be investigated. Hennerbichler et al. 

recently investigated the effect of dynamic compression at different stresses on meniscal 

explants from inner and outer zones117.  They noted an increase in prostaglandin-E2 
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(PGE-2) and nitric oxide (NO) production from inner zones compared to outer zones, 

when compressed at different stress magnitudes. Both PGE-2 and NO are pro-

inflammatory mediators, which are considered to contribute to cytokine recruitment. 

Such recruitment may lead to a disruption in molecular homeostasis, which may affect 

the response of the tissue to loading. 

 

The use of finite element techniques has contributed to understanding how mechanical 

loading affects the meniscus. Gupta and Haut Donahue recently discussed how 

anatomical location may influence the material properties of the tissue, wherein 

influencing the behavior of local cells118. The stresses acting on the cells were found to 

differ compared to the surrounding extracellular matrix. Also, the shielding effect of 

surrounding pericellular matrix material was influenced by the shape of these cells. In 

articular cartilage, investigations in localized forces, cellular permeability and material 

property alterations caused by disease have been explored using finite element 

methods119, 120. However, it is imperative to further investigate the role of pericellular 

microenvironments on meniscal cells, as the tissue is much different than that of articular 

cartilage. Altered loading, caused by forfeited integrity of the meniscus, has been 

examined using finite element methods, as well. Zielinska and Haut Donahue 

investigated the distribution of contact pressures on the surface of the meniscus, as well 

as the relevant strain observed by the tissue, when modeled as a linear elastic, 

transversely isotropic material95. This model provided a representation of contact 

pressure during standing when loaded at two-times body weight. A noticeably greater 

contact pressure was observed in the posterior region compared to the anterior and central 

regions of the medial meniscus, with uniformity of contact pressures in the lateral 

meniscus. Using a meniscectomy model, the researchers observed that axial strain 

increased as more tissue was removed, with up to nearly 18% axial strain after removal of 

30-60% of the meniscus.  
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Molecules Involved in Soft Tissue Degradation 

It has been previously shown that varying levels of dynamic strain can influence the 

biochemical behavior of menisci in vitro32. Additionally, there is strong evidence that 

cellular activity of soft tissues plays an important role in the progression of osteoarthritis. 

Pro-inflammatory mediators, such as Interleukin-1 (IL-1), have been detected in 

osteoarthritic synovium and cartilage31. IL-1 is a 17kDa polypeptide that promotes 

leukocyte infiltration, prostaglandin synthesis, joint swelling, and tissue destruction121. 

IL-1 is produced in two distinct polypeptide forms; IL-1α and IL-1β. The IL-1 family 

also includes IL-1 receptor antagonist protein (IL-1RA), which prevents IL-1 from 

binding to cell surface receptors. Although IL-1α and IL-1β have similar roles in 

physiological activity, they function differently. IL-1α is expressed as a membrane-bound 

protein and IL-1β is soluble121, 122. Both IL-1α and IL-1β initiate collagenase activity and 

decrease pain tolerance, and many approaches in research attempt blocking these 

deleterious cytokines. The use of IL-1RA and other molecules have been used to reduce 

IL-1 activity in vitro and in clinical trials123-125.  

 

The downstream effects of IL-1 on the expression and production of other molecules has 

also been readily studied.  IL-1 has been shown to increase nitric oxide (NO) levels, as 

well as increasing production of MMPs, lactate and prostaglandin-E2 (PGE-2), all of 

which contribute to degradation of meniscal and other fibroblastic tissue104, 126, 127. The 

addition of IL-1 to meniscal explants in vitro has been demonstrated to disrupt matrix 

turnover111, and its inhibitory influence on mechanically stimulated explants is suggested 

to be dependent on nitric oxide synthase-2 (NOS2) gene expression and NO. The activity 

levels of MMPs and aggrecanases are also strongly influenced by IL-1105, 128, and such 

activity leads to cleavage of aggrecan, collagen, and other matrix molecules105 (Figure 

1-7). The fragmentation associated with cleaved collagen and aggrecan promotes further 

irritation of surrounding cells, compounding the inflammatory response, promoting 

synovitis129 and encouraging macrophage activation105.   
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Figure 1-7. Catabolic biochemical pathway induced by compressive loading. IL1R 
represents the IL-1 receptor site. Thin arrows represent increase expression and 
production. Modified from Burrage et al105. 
 

Aggrecanases and MMPs are responsible for cleaving specific matrix proteins, which 

leads to the degradation of soft tissues both in vitro and in vivo. The following describes 

secreted MMPs and their target molecules. MMP-1 and MMP-13 are collagenases, which 

degrade native collagen fibers130. Some of the cleavage sites of collagen incurred by 

MMP-1 include Gly784-Ile785 and Gly781-Ile782131. Collagen type II is cleaved in vitro 

by MMP-13 at the Gly775-Leu776 site132. Aggrecan is also subject to MMP-13 cleavage, 

where cleavage in the IGD is observed regardless of the presence of CS133. MMP-3, of 



www.manaraa.com

21 
 

the stromelysin group, is responsible for degradation of proteoglycans and type IX 

collagen. MMP-9 is a gelatinase, responsible for degrading denatured collagen, 

proteoglycans, and fibronectin. Aggrecanases-1 and -2 (A Disintegrin and 

Metalloproteinase with ThromboSpondin motifs [ADAMTS]-4 and -5) are responsible 

for cleaving aggrecan specifically. These molecules differ from ADAMs (membrane-

bound proteins) because ADAMTS lack a membrane-spanning region at their C-

terminus70. The specific cleavage sites of aggrecan by ADAMTS catabolism differ 

depending on the molecule of interest. Specifically, ADAMTS-4 (aggrecanase-1) cleaves 

aggrecan in vitro in the interglobular domain between Glu373-Ala374, and ADAMTS-5 

(aggrecanase-2) cleaves aggrecan in the interglobular domain between Glu1871-

Leu1872134-136. 

 

Regular matrix turnover is essential for maintenance of healthy menisci. However, over 

expression and production of catabolic molecules may lead to matrix deterioration and 

meniscal destruction. Previous investigations have demonstrated an increase in catabolic 

gene expression of meniscal explants subjected to a single bout of overloading levels of 

dynamic compressive strain32, 134, 135. The use of exogenous catabolic molecules leads to a 

decrease in the ability for soft tissues to repair and heal as well99, 136-140. The presence of 

NO in synovial joints of those afflicted with OA is typically higher than those with 

healthy joints. Murrell et al. found that chondrocytes of articular cartilage produce more 

NO following infection or inflammation in vitro than ligaments141; however, their 

research did not investigate the NO production of cells of the meniscus.  NO has been 

shown to inhibit aggrecan synthesis, enhance MMP activity, and is suggested to increase 

oxidative injury to chondrocytes and mediate chondrocyte apoptosis31, 104.  Hashimoto et 

al. determined apoptosis and NO production of lapine meniscal cells following ACL-

transection104. It is interesting to note that, although they harvested menisci 9 weeks 

following injury, apoptosis of the meniscus was still significantly greater for injured 

knees; apoptosis typically initiates 6h-7 days immediately following injury in 

chondrocytes142.  This study used the contra-lateral, uninjured limb as the control limb, 

and this limb was not subjected to sham operation. It is unclear if compensatory or 
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surgical effects influenced apoptosis of the operated meniscus. However, histological 

grade of meniscal degradation was correlated with percent apoptosis. Takahashi et al. 

investigated the effect of hyaluronan on NO production in a rabbit osteoarthritic model in 

vivo12. The meniscus was observed to produce significantly more NO than synovium, and 

the production of NO was significantly reduced by the addition of hyaluronan for both 

synovium and meniscus. However, hyaluronan did not significantly inhibit meniscal 

production of NO in the presence of lipopolysaccharide in vitro. Lipopolysaccharide is 

known to lead to expression and release of cytokines such as TNF-α and IL-1143.  

 

Inhibiting the catabolic IL-1 pathway induced by mechanical loading could potentially 

provide therapeutic benefits following traumatic injury. By blocking the IL-1 signaling 

pathway, catabolic damage may be held idle. Glucocorticoids have been shown to inhibit 

IL-1 production by making mRNA products unstable144. Additionally, corticoids like 

methylprednisone have been shown to reduce the number of mast cells in OA patients145.  

When used as a treatment for patients with OA, glucocorticoid therapy has been shown to 

reduce pain for up to four weeks146. Glucocorticoids are reportedly prescribed by 

rheumatologists for up to 95% of their patients146, yet their long-term efficacy has yet to 

be proven145. Organisms naturally control activation of IL-1 signaling via IL-1 receptor 

antagonist (IL-1RA), which binds to the receptor type I (IL-1RI) on the cell membrane 

and blocks signaling of secondary mediators such as NO and other cytokines. 

Researchers have successfully used IL-1RA to reverse the influence of detrimental 

mechanical compressions on cartilage destruction147, 148. In vivo, intervertebral disks 

treated with IL-1RA demonstrated reduced cartilage lesions, synovitis, and osteophyte 

size149. Anakinra, a recombinant form of IL-1RA, has been recently implemented as a 

clinical treatment for patients with symptomatic and radiographic knee OA150, and shows 

promise. 

Models for Investigating Knee OA 

Within the last decade, researchers have developed impaction-based models to 

investigate the role of microcracks and fissuring on soft tissue viability. In 2001, Ewers et 
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al showed that, in vitro, impaction of cartilage that led to surface fissuring resulted in an 

increase in cell death at the fissure edge151. Additionally, Lewis et al discovered an 

increase in cell death at the fissure surfaces following cartilage impaction152. Although 

these works have been performed in vitro, they suggest the potentially damaging acute 

response of soft tissue to impaction, which should be further investigated. 

 

For nearly 30 years, investigators have been studying the role of altered loading and 

impaired biomechanics using animal models. The most prominent and well-developed 

animal model for investigating knee OA has been the anterior cruciate ligament 

transection (ACLT) model10, 153-161. The ACLT model traditionally consists of a 

parapatellar incision to expose the joint space, and a clean scalpel incision to transect the 

ACL is performed. The joint space is then sutured closed and the animal treated with pain 

medication for 24-48hrs and antibiotics. With the ACLT model, researchers have 

investigated several different time points and morphological characteristic changes to the 

cartilage, subchondral bone, and menisci (Figure 1-8). Typically, researchers have 

investigated the damage to knees at least 2-3weeks after subjection to ACLT10, 156, 161. 

Within the first two weeks following ACLT of the rabbit knee, changes to the menisci 

have not been identified159. However, after only two weeks in the knees of rats subjected 

to ACLT, cells of the tibial articular cartilage stain positive for osteoclast markers 

(tartrate-resistant acid phosphatase, TRAP) 156. Such damage to the knee has also led to 

an increase in the secretion of degradative molecules such as serum cartilage oligomeric 

matrix protein (COMP) and urinary C-telopeptide of type II collagen I and II (CTX-I and 

-II) 156. In the menisci, an increase in water retention10, decrease in DNA/RNA content, 

altered expression of both catabolic and anabolic matrix molecules161, and changes in cell 

morphology159 have been observed three weeks after ACLT, most noticeably in the 

medial menisci(Figure 1-8). Four weeks after ACLT is still considered the early phase of 

disease155. An increase in apoptotic signaling in the articular cartilage has been observed 

at this time point155, 157, and the release of nitrites has been linked to the increased density 

of apoptotic cells as well as the advanced degree of arthritic degeneration155.  Fissures 

and erosion of articular cartilage has been observed just four weeks after ACLT162, and a 



www.manaraa.com

24 
 

greater density of osteophyte formations, the accumulation of hypertrophic cells, and an 

increase in nitrotyrosine in the articular cartilage has also been reported163. The formation 

of new blood vessels has also been observed, indicating the progression of OA in the 

ACLT joint after just four weeks163.  After eight weeks, degradation of cartilage and 

menisci ensue12, 154, 158, 163, 164. For example, the menisci have been shown to produce 

more nitrites nine weeks after ACLT compared to the synovial tissue12. At this time 

point, the articular cartilage of the tibial plateau has become mostly osteophytic, and the 

chondrocytes have developed hypertrophic characteristics, expressing vascular 

endothelial growth factor (VEGF)163. As time progresses, ACLT continues to advance 

knee joint arthritis. After twelve weeks, the articular cartilage has been reported to 

demonstrate nitrotyrosine-positive cells in the entire hypertrophic and calcified regions, 

and apoptosis has been observed of all cells in the hypertrophic region163.  Severe, 

advanced OA changes have been morphologically reported as well164. Interestingly, the 

severity of meniscal damage in the ACLT knee of canines has not always been correlated 

with articular cartilage degeneration158. Additionally, in ACLT models, previous 

researchers focus mostly on the medial meniscus and how it responds to altered joint 

kinematics via cellular, molecular, and morphological changes10, 159, 161.  

 

Investigations of changes to articular cartilage and menisci within the first few weeks of 

ACLT have only marginally been investigated159. One reason for this may be that altered 

loading mechanics do not lead to changes in menisci and cartilage morphologies 

indicative of degeneration. Another reason may be that surgically induced swelling and 

inflammation may not be recovered within an acute period following ACLT. However, 

such acute inflammation may confound the biochemical behavior within the knee and 

such surgically induced inflammation may not demonstrate an isolated, altered loading 

behavioral response of the sensitive soft tissues. Therefore, it is important to develop a 

more realistic model to investigate traumatically induced OA that will aid in translational 

therapies from bench-top to clinic. 
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Figure 1-8. Timeline of degradation following ACLT. Week 2 changes were observed in using a rat ACLT model156, whereas all 
subsequent degenerative changes were observed using a rabbit ACLT model10, 12, 154, 155, 157-159, 161-165.  Images used with permissions. 
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Problem Statement 

Catabolic Behavior Following Mechanical Loading of the Meniscus 
Mechanical loading of some musculoskeletal tissue, such as articular cartilage, has been 

shown to regulate the amount of collagen and proteoglycans, although mechanisms of 

such regulation have not been explored in the knee joint meniscus107, 166, 167. Meniscal 

lesions have been suggested as a precursor to the onset of OA. Such lesions often lead to 

surgical removal of the torn portion of the meniscus, increasing cartilage to cartilage 

contact area. Partial meniscectomies have been shown using finite element analysis and 

histology to lead to altered and increased mechanical loading on the remaining meniscus 

and underlying articular cartilage. Consequently, pathological compressive strains of 

more than 15% have been shown to increase proteoglycan breakdown and meniscal 

matrix degradation. Additionally, gene expression measurements merely suggest possible 

matrix remodeling mechanisms and do not necessarily result in protein syntheses from 

which matrix changes occur. Investigations in aggrecanase expression, as well as protein 

synthesis of key inflammatory markers, need to be performed. It is hypothesized that 

the catabolic response of meniscal explants will be influenced by a single bout of 

dynamic compression, and that disuse and overuse will result in an upregulation of 

aggrecanase gene expression and IL-1 activity. 

 

It is of particular interest to inhibit the progression of inflammatory mediators involved in 

the degradation the menisci and potential advancement of osteoarthritis. Although many 

clinicians rely on steroidal and non-steroidal anti-inflammatory drugs to relieve pain and 

discomfort of the osteoarthritic knee, little evidence has been provided describing the 

efficacy and preventative measures of such treatments in the health of the knee146, 168-171. 

These treatments may be too broad and non-specific, and may inhibit the 

catabolic/anabolic balance the menisci and cartilage. The use of specific pharmacological 

supplementation, such as that used for rheumatic diseases, to target specific catabolic 

pathways may provide a novel treatment for osteoarthritis and should be investigated. 

Extensively, it is hypothesized that the use of IL-1 Receptor Antagonist will inhibit 
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the expression of specific catabolic genes, which will potentially inhibit the 

advancement of degeneration in the meniscus.  

Effect of Tibiofemoral Injury on the Meniscus 
Changes in glycosaminoglycan (GAG) gene expression and production in cartilage is 

often seen during experimental OA172. Many studies in the literature use anterior cruciate 

ligament (ACL)-transection or medial partial or complete meniscectomy to replicate OA. 

This is troublesome for analyzing a real-life injury, as it does not incorporate other 

aspects of joint damage that may contribute to inflammation and cytokine recruitment, 

likely to influence tissue degradation. In the case of meniscectomy, it removes the 

influence of the meniscus altogether. Therefore, this research will investigate the in vivo 

changes in GAG coverage of menisci caused by traumatic joint injury with and without 

ACL tear. It is hypothesized that GAG coverage will be affected by traumatic injury, 

in both torn and intact ACL models. Additionally, it is hypothesized that a traumatic 

injury to the knee resulting in ACL rupture will demonstrate a different response of 

the menisci 12-weeks following injury compared to the “gold standard” ACLT 

model. 

 

Acute cellular changes to the menisci following ACL rupture and meniscal tearing may 

also play a key role in the deterioration and degradation of the tissue. Although in vitro 

studies have investigated the response of both cartilage and menisci following traumatic 

impaction, the in vivo response to traumatic impaction on cell viability has only been 

minimally investigated. Therefore, it is hypothesized that traumatic impaction and 

ACL rupture, leading to meniscal tears, will result in an increase in cell death in 

both medial and lateral menisci.  

Research Aims 

Aim 1: To quantify the expression of aggrecanase-1 and -2 and the production of IL-1α 

following various levels of mechanical loading. Meniscal explants were dynamically 

compressed for 2 hours at 0, 10 and 20% dynamic strain. Biochemical changes were 
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quantified using molecular biology techniques to determine endogenous ADAMTS 

expression and IL-1α activity of the tissue. 

Aim 2: To determine the influence of IL-1RA treatment on the matrix degradation 

markers following various levels of mechanical loading. Meniscal explants were 

dynamically compressed for 2 hours at 0, 10 and 20% dynamic strain following treatment 

with and without IL-1RA. Biochemical changes were quantified using molecular biology 

techniques to determine anabolic and catabolic activity of the tissue. 

Aim 3: To determine spatial sulfated glycosaminoglycan coverage in healthy rabbit 

meniscus. Menisci were stained using histological methods to determine 

glycosaminoglycan content distribution, cellular density, and tissue area for anterior, 

central, and posterior regions of medial and lateral menisci of healthy, uninjured rabbits. 

Aim 4: To characterize the role of traumatic impaction on the health and degradation of 

the menisci. Rabbits were anaesthetized and injured using a novel closed-joint impaction 

model for investigating osteoarthritis in vivo. Acute and chronic changes in menisci were 

characterized and compared with age-matched ACLT and healthy rabbits.  

Aim 5: To quantify spatial sulfated glycosaminoglycan coverage in the injured meniscus. 

Rabbit menisci from knees subjected to tibiofemoral impaction or ACLT were stained 

using histological and immunohistochemical methods to determine glycosaminoglycan 

coverage across all regions of both medial and lateral menisci 3 months after injury and 

compared with age-matched healthy rabbits.   

Aim 6: To quantify the viability of meniscal cells and the production of NO following a 

single impaction and traumatic ACL rupture in the closed-joint lapine knee. Cell viability 

was determined using calcein AM and ethidium homodimer and NO was assayed using a 

commercially available kit. 
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Chapter 2 – Catabolic Response of Meniscal Tissue 
Explants to Dynamic Compressive Strain1 

Abstract 

Objective: Following partial meniscectomy, the remaining meniscus is exposed to an 

altered loading environment. 20% dynamic compressive strain in vitro on meniscal tissue 

explants has been shown to lead to an increase in release of glycosaminoglycans from the 

tissue and increased expression of interleukin-1α (IL-1 α). The goal of this study was to 

determine if compressive loading which induces endogenously expressed IL-1 results in 

downstream changes in gene expression of catabolic molecules in meniscal tissue, such 

as aggrecanase expression and IL-1α protein production. 

Methods: Porcine meniscal explants were dynamically compressed for 2 h at 1 Hz. 

Relative changes in gene expression of A Disintegrin and Metalloproteinase with 

ThromboSpondin 4 (ADAMTS4), ADAMTS5 and subsequent production of IL-1α by 

meniscal tissue in response to varying levels of dynamic compression (0%, 10%, and 

20%) were measured.  

Results: 20% dynamic compressive strain upregulated ADAMTS4 compared to no 

dynamic loading. ADAMTS5 gene expression was upregulated under 10% strain 

compared to no dynamic loading. An increase in IL-1α protein production was measured 

following 20% dynamic strain compared to 0% and 10% dynamic strain. 

Conclusion: This data suggests that changes in mechanical loading of the knee joint 

meniscus from 10% to 20% dynamic strain can increase the catabolic activity of the 

meniscus. 

Introduction 

The menisci play a major role in load distribution and transmission in the knee joint30, 85, 

and have been shown to be mechanically sensitive11, 173. Recently, 20% dynamic 

compressive strain on meniscal explants has been shown to lead to increased 
                                                 
1 The material contained in this chapter was in part previously published the journal Osteoarthritis and 
Cartilage. Reprinted with permission. 
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glycosaminoglycan (GAG) content in the culture media, an upregulation of interleukin-1 

(IL-1) gene expression and increased release of nitric oxide (NO)32, 174. IL-1 is a pro-

inflammatory cytokine involved in the etiology of OA175, 176. It has been shown to 

increase levels of NO176 which in turn can induce gene expression of other catabolic 

molecules such as metalloproteinases (MMPs matrix cleavage proteins) and inhibit cell 

proliferation177-179. IL-1 has been shown to increase cyclooxygenase-2 (COX-2) synthesis 

leading to increased production of prostaglandin E2 (PGE2) in osteoarthritic cartilage175.  

 

Certain matrix metalloproteinases (MMP-1, MMP-3, MMP-9, and MMP-13) and 

aggrecanases-1 and -2 (ADAMTS4 and ADAMTS5) have been shown to be responsible 

for the breakdown of collagens and proteoglycans in soft tissues105, 180-184. Although in 

vitro experiments using meniscal explants have demonstrated that the menisci respond to 

dynamic loading by expressing elevated levels of IL-1 in a strain dependent manner32, the 

potential relationship of endogenous IL-1 with other catabolic activity in menisci has not 

been investigated.  Briefly, MMP-1 and MMP-13 represent collagenases, and are 

involved in degradation of native collagen fibers130. MMP-3 is a representative of the 

stromelysin group and is partially responsible for degradation of proteoglycans and type 

IX collagen. The last group of MMPs (gelatinases) includes MMP-9. Gelatinases degrade 

denatured collagen, proteoglycan and fibronectin130. MMP-1 and MMP-13 are partially 

responsible for the breakdown of the helical region of fibrillar collagens185, 186 and 

cleavage of the triple helices185, respectively. Tissue inhibitors of metalloproteinases 

(TIMPs) are elevated in OA synovial fluid and may indicate a natural attempt by the 

body to counteract the action of MMPs187. In a rat iodoacetate model of OA, both A 

Disintegrin and Metalloproteinase with ThromboSpondin (ADAMTS) and MMP 

neoepitopes were present, suggesting that specific cleavage of aggrecan by ADAMTS 

and MMP may be responsible for the degradation of aggrecan182. Over-expression of 

these aggrecanases results in cartilage matrix degradation188-190, and inhibition of these 

enzymes can prevent aggrecan degradation in vitro191. 
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In articular cartilage, both cytokines and growth factors have a role in tissue homeostasis. 

Both IL-1 and tumor necrosis factor α (TNFα) appear to be responsible for pathological 

processes in articular cartilage187, 192, 193. While previous studies have added exogenous 

IL-1 to meniscal tissue and noted degradative downstream effects117, 136, it is unclear if 

compressive mechanical loading with endogenously expressed IL-1 results in changes of 

anabolic and catabolic genes in meniscal tissue. Recently, it has been shown that 

mechanical loading does not alter TNFα gene expression in meniscal tissue135. 

Furthermore, growth factors such as transforming growth factor β (TGFβ) have an 

important role in articular cartilage biosynthesis187, but mechanical loading of meniscal 

tissue alters expression of such genes has not been illlustrated135.  

 

This in vitro study was designed to measure gene expression of catabolic molecules 

(ADAMTS) and production of pro- and mature IL-1α protein following various levels of 

dynamic mechanical compression of meniscal tissue.  

Materials and Methods 

Mechanical Stimulation 
Mechanical stimulations were performed according to the previously introduced 

protocol32. Briefly, six explants (5 mm tall and 6 mm diameter) were cut from each of 12 

porcine menisci (6 animals, age 18 weeks). Each explant was cut perpendicular to the 

femoral surface of the meniscus to preserve as much superficial surface as possible and 

was primarily taken from the outer zone. Explants were approximately 7-8 mm tall at 

harvest and were placed in a custom device in order to cut the explants to 5 mm tall while 

preserving the superficial surface. Each explant was incubated separately for 48 h in 

growth media (89% Dulbecco’s Modified Eagle Medium/Ham’s F12, 10% Fetal Bovine 

Serum (FBS), 1% Penicillin Streptomycin) at 37˚C with 5% CO2 to equilibrate. Media 

were changed every 24 h. A total of 72 explants were harvested and 54 were randomly 

used for the study. Nine explants from each animal were randomly selected and exposed 

to 1 of 3 loading protocols (0%, 10% or 20% dynamic compression strain, with three 

explants per loading protocol). Mechanical stimulation was performed with a custom 
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built bioreactor32, 174. All explants were unconstrained for 48 h during which time no 

visual swelling was noted. Therefore, all strain measurements assumed no swelling of the 

tissue. Following this period, a preload of 0.0076 MPa was applied by the platen, and six 

explants were simultaneously loaded to either 10% or 20% dynamic compressive strain 

or 0% compressive loading (tare weight of the platen remained as a static load) for 2 h at 

1 Hz to simulate walking. It has previously been shown that when using this bioreactor, 

10% dynamic strain results in a peak stress of 1.41±0.10 MPa and an equilibrium stress 

of 0.046±0.01 MPa, while 20% dynamic strain results in peak and equilibrium stresses of 

3.55±0.43 MPa and 0.13±0.02 MPa, respectively174. The equilibrium stress was indicated 

as the measured value after 2 h of dynamic loading, at which the stress did not 

significantly change with each cycle. Following mechanical stimulation, explants were 

first cut in half to separate superficial and deep zones tissue and then weighed and placed 

in media for 24 h at 37˚C with 5% CO2. The explants were then treated with RNALater 

(Ambion Inc., Austin, TX) for 24 h prior to storage. The superficial explants represent the 

top 2.5 mm of the meniscus that contacts the femur while the deep explants represent the 

middle 2.5 mm of the tissue.  

Gene Expression 
To isolate an adequate amount of RNA for gene analysis three explants from a given 

animal that received the same loading treatment were combined for total RNA isolation 

using a commercially available kit (SV Total RNA Isolation System, Promega, Madison, 

WI) as previously described32. The RNA quality was verified by running 200ng of RNA 

on a 1.5-2.5% ethidium bromide-stained agarose gel, and visualizing the intact large and 

small ribosomal subunits under ultraviolet light. Reverse Transcription (RT) and real-

time Polymerize Chain Reaction (PCR) were carried out to measure gene expression in 

mechanically stimulated meniscal tissue as well as calibration (control) tissue. 

 

RT reactions began with a 12mL reaction, consisting of 300ng RNA, 100ng random 

primers and 0.83mM dNTPs. Samples were heated to 65˚C for 5 min and then placed on 

ice. At this time, a 7mL mix consisting of 4mL of the 5x buffer provided with the 
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SuperScript II (Invitrogen Corporation, Carlsbad, CA, USA), 0.029 M dithiothreitol 

(DTT) and 40 units of RNase Out (Invitrogen Corporation, Carlsbad, CA, USA) were 

added to each reaction. The reaction was incubated at 25˚C for 2 min and again placed on 

ice while 50 units of SuperScript II (Invitrogen Corporation, Carlsbad, CA, USA) were 

added to each reaction. Tubes were then incubated at 25˚C for 10 min, followed by 42˚C 

for 50 min, 70˚C for 15 min and 4˚C for 5 min. Samples were placed on ice, and 2 units 

RNase H (New England BioLabs, Ipswich, MA, USA) were added, bringing the final 

reaction volume to 20mL. Samples were incubated at 37˚C for 20 min, followed by 20 

min at 65˚C, and 5 min at 4˚C. All reactions were performed in an Eppendorf 

Mastercycler Gradient machine (Westbury, NY, USA). 

 

Real-time PCR was performed in 25mL reaction volumes using gene specific primers 

designed from partial or complete Sus scrofa cDNA sequences available from National 

Center for Biotechnology Information (NCBI), or by using primers from the 

literature194(Table 2-1). Newly designed primers were created using the PrimerQuest and 

OligoAnalyzer 3.1 software (Integrated DNA Technologies, Coralville, IA, USA). The 

ribosomal 18s RNA was used as a housekeeping gene and was run on each plate 

alongside the gene of interest. Reactions for genes contained 15ng of cDNA (ADAMTS4, 

ADAMTS5 and 18s [when used a as a housekeeper for these genes]) with 0.1mM of each 

primer, 12.5mL SYBR Green Fluorescence Mix. All qPCR reactions were run on a 

Stratagene MX3000P QPCR System (La Jolla, CA, USA), and began with an initial 

denaturation of 15 min at 95˚C. This was followed by 40 cycles of: 95˚C for 15 s, 60 s at 

55˚C and 40 s at 72˚C. This was followed by a dissociation curve analysis to verify the 

specificity of the amplification. All samples were run in duplicate and data were analyzed 

using Stratagene MXPro QPCR Software (La Jolla, CA, USA). A dissociative curve was 

run with each plate setup to confirm regularity of the tests. Samples were analyzed using 

the Pfaffl method by which the ratio of the target gene to the housekeeping gene is 

quantified with respect to the calibrator using the following formula: 
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where Ct = cycle number in the linear range of amplification, E = efficiency of the 

process for each gene, target = gene of interest, ref = housekeeping gene, control = 

calibrator, treated = sample. 

 
Table 2-1. Primer sequences used for specific genes. 

Gene Sequences Denaturation Reference 
ADAMTS4 5' AGGAGGAGATCGTGTTTCCAGAGA 55˚C 135 
 3' AAAGGCTGGCAAGCGGTACAACAA   
ADAMTS5 5' TTCGACATCAAGCCATGGCAACTG 55˚C 135 
 3' AAGATTTACCATTAGCCGGGCAGG   
18s 5' GCAAATTACCCACTCCCGAC 55˚C 32, 135 
 3' CGCTCCCAAGATCCAACTAC   

Western Blotting 
Protein was isolated from superior and deep sections of the 0%, 10% and 20% dynamic 

strain tested explants. Three frozen explants (5mm diameter; 2.5 mm thick) from each 

respective testing group/location were used for one protein extract sample and were 

pulverized in liquid nitrogen using mortar and pestle to make one sample.  The 

pulverization set-up was wiped with 70% isopropanol and PBS between samples. The 

samples were weighed using microcentrifuge tubes and kept on ice. Radioimmuno-

precipitation assay buffer (RIPA, 1% Igepal, 0.5% sodium deoxycholate, 0.1% SDS, in 

PBS) was added to each sample (3ml RIPA/1g tissue) and mixtures were vortexed for 60s 

and placed on ice for 45min. Each sample was then homogenized using a polytron twice 

for 15s. Upon homogenization, the samples were centrifuged at 14,000g for 10min at 

4°C. The supernatant was extracted and stored at -80°C and the pellet was discarded. 

After proper homogenization of the samples, supernatant were collected and protein was 

quantified using the modified Lowry method. 
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Total protein isolates of independent samples (10µg total protein each) were separated on 

16% SDS-PAGE gels (PAGEgel, Inc., San Diego, California, USA). PAGEgel 2-Color 

SDS Marker was used as a molecular weight standard. Transfer of protein onto 

nitrocellulose membranes (0.2 µm pore size; Pierce Biotechnology, Rockford, IL) was 

performed at 50V/250mA using tris-glycine-SDS transfer buffer with 10% methanol at 

4˚C.  Membranes were removed and rinsed in PBS, and blocked in Odyssey blocking 

buffer (LI-COR, Lincoln, NE) overnight at 4°C. To determine the effects of altered 

mechanical loading on catabolic molecular production, the membrane was then incubated 

with primary antibody solution (0.1ug/ml biotinylated anti-porcine IL-1α antibody in 

Odyssey blocking buffer; R&D Systems, Minneapolis, MN) overnight at 4˚C with 

constant shaking. Blots were then conjugated with secondary antibody solution (0.2ug/ml 

biotinylated goat anti-mouse IgG in Odyssey blocking buffer; Upstate, Billerica, MA) 

and fluorescently labeled with Alexa Fluor 680 Streptavidin (0.4ug/ml, Invitrogen, 

Carlsbad, CA). Following this, the membrane was washed, rinsed and fluorescently 

visualized with the LI-COR Odyssey Infrared Imaging System (LI-COR Biosciences, 

Lincoln, NE). Recombinant porcine interleukin-1α (R&D Systems, Minneapolis, MN) of 

varying dilutions was used as a positive control.  

Data Analysis 
All data are presented as mean ± standard deviation (SD). A repeated measures ANOVA 

with Fisher’s protected least significant difference method was used to calculate 

statistical differences (P < 0.05 was considered significant) between different loading 

conditions for both zones. Paired t-tests were used to measure differences in cell response 

of pair-wise superficial and deep zones for each loading conditions (P < 0.05 was 

considered significant). 

 

For western blotting, semi-quantitative comparisons between band intensities of samples 

were performed using a custom MATLAB program (MathWorks, Natick, MA). 



www.manaraa.com

36 
 

Results 

The expression of two ADAMTS genes following various levels of mechanical 

compression was studied (Figure 2-1). There was a significant upregulation of 

ADAMTS5 with 10% dynamic compressive strain compared to no and 20% dynamic 

strain tests for deep explants. On the other hand, 20% strain upregulated ADAMTS4 

expression for superficial explants compared to 10% strain. ADAMTS4 was significantly 

upregulated at no dynamic strain compared to 10% dynamic strain tests for superficial 

explants. 

 

Western blot techniques were implemented to determine if changes in IL-1α protein 

production are also evident following pathological loading (Figure 2-2).  Results show 

that samples tested at physiological levels of compressive strain (10%) demonstrate 

minimal expression of a pro-IL-1α aggregate.  

Discussion 

This study was designed to investigate the response of meniscal explants to various 

magnitudes of dynamic compressive strain while measuring changes in gene expression 

of catabolic molecules and the production of IL-1α. The results suggest that 2 h of 

dynamic loading at 20% strain increase expression of catabolic enzymes involved in the 

degradation of proteoglycans, namely aggrecanases (ADAMTS4), whereas 10% dynamic 

strain increases ADAMTS5 compared to no dynamic loading. 

 

Previous computational studies by our group suggest that removing 30% or more or the 

meniscus increases the maximum compressive strains in the remaining meniscal tissue to 

approximately 20%95, compared to 10% strain in the intact meniscus. Hence, dynamic 

strain values of 10% and 20% were compared in this study. It was expected that both 

under-loading (0% dynamic strain) and overloading (20%) would increase catabolic gene 

expression compared to 10% dynamic strain. Indeed, overloading and no loading resulted 

in increased gene expression for ADAMTS4 compared to 10% dynamic strain. Of genes 

explored in this and of previous studies32, ADAMTS4 was the only catabolic gene 
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upregulated following under-loading compared to 10% strain, which may indicate that 

the period of no dynamic loading in this study (2 days) is insufficient to induce a 

complete degradative pathway involving MMPs. Previous studies have shown that 

exposing meniscal explants to cyclic hydrostatic pressure for 4 h prevented upregulation 

of COX-2, IL-1, MMP-1, MMP-3, and iNOS that was seen in unloaded explants195. 

Djurasovic et al. showed that 4 weeks of immobilization in a canine model resulted in a 

decreased aggrecan gene expression in the menisci68. Further long-term studies are 

needed to investigate if long-term lack of dynamic loading adversely affects meniscal 

tissue composition and potential mechanisms, as the current study only considered gene 

expression following 24 h of post-incubation.  

 

The down-regulation of ADAMTS5 following no dynamic compressive strain compared 

to 10% strain is worth noting, as it was expected that catabolic expression would be 

influenced by pathological, not physiological, dynamic strain. As this study is a single 

time-point of 2 h of dynamic loading with 24 h post-incubation, it will be important to 

investigate the expression of such molecules over longer periods of time in order to better 

understand the temporal expression patterns following mechanical loading.  

 

In the present study, all genes and protein production were measured at the same post-

incubation time point based on previous studies174. Earlier observations of cytokine and 

anabolic gene expression profiles following mechanical loading demonstrated a 

maximum expression of ADAMTS4, MMP-3 and MMP-9, as well as COL-1 after 24 h 

of mechanical loading179, 196. Nonetheless, changes in the expression of the genes of 

interest may be influenced by both the in vitro approach and/or the choice in post-

incubation time period.  

 

Protein analysis performed in this study demonstrated the presence of a pro-IL-1α 

aggregate around 70kDa. This aggregation is approximately twice the molecular weight 

of the native pro-IL-1α isoform. Although it is possible that the monoclonal anti-porcine 

IL-1α antibody used in these experiments cross-reacted with a larger, non-specific 



www.manaraa.com

38 
 

protein, it is not likely. The use of monoclonal antibodies provides greater specificity 

than polyclonal antibodies, and such specific antibodies can help determine changes in 

molecular conformations, phosphorylation states of proteins, and protein-protein 

interactions197.  Additionally, validation of the blotting and antibody specificity was 

performed using recombinant porcine IL-1α protein run simultaneously on the same gel 

as the experimental samples, which showed distinct bands at the appropriate molecular 

weight for IL-1α (17kDa). It is possible that interaction between glycosylation and/or 

aggregations of pro-IL-1α protein, or the presence of pro-IL-1α dimers, may exist if 

proteins were not fully reduced or denatured during the preparatory process. Dimeric 

forms have been observed following blotting of IFN-β198. Use of endoglycosidases, such 

as Peptide: N-Glycosidase F (PNGase-F), may help prevent dimers in future tests. 

 

Investigations in cytokine gene expression following differential loading may provide 

insight into the etiology of osteoarthritis. The work by Gupta et al. suggesting the up-

regulation of IL-1α gene expression caused by abnormal compressive strains was 

supported by recent immunoblotting for IL-1α32. The presence of IL-1α protein 

encourages apoptosis and matrix degradation by inhibiting repair, which may contribute 

to the degeneration of the meniscus, and ultimately lead to knee joint osteoarthritis. 

Further investigations of aggrecanase gene expression were also performed, suggesting 

mechanical influence on cytokine transcription135. Compressive strains of 20% have been 

shown to result from removing 30-60% of the meniscus during partial meniscectomy95. 

These data, taken together with current data showing increased pro-IL-1α production 

following 20% dynamic compressive strains and increased aggrecanase gene expression, 

suggests that removing 30% or more of the meniscus may results in matrix disruption 

mediated by IL-1α.  

 

The inner region of the meniscus is typically removed during partial meniscectomy, and 

therefore only outer meniscal explants were investigated in the present study. Meniscal 

tissue is comprised of at least three relatively distinct cell populations199 and cells from 

different regions of the meniscus have been shown to exhibit varying cell morphology 
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and gene expression57, 200, 201. As in previous experiments from our lab, there were limited 

statistical differences between superior and deep explants32, 174, possibly due to an 

inefficient separation of the different cell populations. Previous investigations have 

demonstrated differences between superficial and deep zones of the tissue following 

mechanical stimulation56. Future studies should include collection and compression of 

explants from both inner and outer regions, as well as immunostaining of explants to 

determine spatial expression and production of genes and molecules to account for 

potential ineffectiveness of isolation between different cellular populations. 

 

Bisection of the explants into superior and deep zone has previously been shown to 

release many growth factors which may present misleading expression results202.  

However, all samples in this study were bisected, and therefore the relative differences 

are still significant. It is possible that the measured response may be due to both 

mechanical stimuli and cutting the samples, and absolute values should be interpreted 

with caution. The potential for complete unloading of the explants may arise due to 

platen lift-off during dynamic compression. In this study, we measured loading stresses 

during compression and recovery of each cycle during the 2 h period. However, it is 

possible that platen lift-off from the explants occurred, especially during several of the 

initial cycles for 20% strain. Regardless, measured stress at or above the measured tare-

load returned following roughly 5-10 cycles (data not shown). The recovery of the 

explants to original height during dynamic compression may vary depending on the 

native anatomical location of the explant. For example, in vivo MRI imaging of meniscal 

thickness reflects differences in rate of recovery following distance running in humans112. 

Variation in thickness recovery, and therefore duration of platen lift-off, may depend on 

rate of compression as well as whether the explant is of lateral or medial meniscal origin. 

 

A finite element model of the knee has demonstrated that 20% axial strains may be 

indicative of strain levels seen following removal of 30% or more of the meniscus95. 

However, it is important to note this model used an intact meniscus, not an isolated 

meniscal explants, which may lead to different stresses due to lack of confinement of the 
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surrounding tissue. The current study shows that strains of 20% initiate expression of 

several catabolic enzymes that have been previously found to degrade proteoglycans in 

the solid matrix of meniscal tissue175, 189, 203. Thus, the remaining meniscal tissue may be 

vulnerable to degeneration following certain partial meniscectomies. Future in vivo 

studies should investigate changes in morphology, gene expression, and matrix molecules 

of the remaining meniscal tissue following partial meniscectomy. It is unknown if the 

gene expression found in this study would translate to protein expression and eventually a 

change in the material properties of the remaining meniscal tissue. This would likely 

further exacerbate the degeneration of the underlying articular cartilage. 

 

This data, in conjunction with our previous studies, suggests that dynamic loading of 

20% increases ADAMTS-4 gene expression which could lead to meniscal tissue 

degeneration. These data are some of the first to suggest that the remaining meniscus 

following partial meniscectomy may contribute to the pathology of the knee joint beyond 

just alteration in loads on the underlying articular cartilage. Matrix degradation of the 

remaining meniscus may alter the material properties of the meniscus tissue rendering it 

unable to protect the underlying cartilage. It remains to be determined whether 

mechanically induced IL-1 in the meniscus is responsible for changes in gene expression. 

Recommendations 

It is important to explore the role of IL-1 in the biochemical response of meniscal tissue. 

The role of inflammation in OA development has been elucidated in recent work32, 136, 139, 

192. However, its impact on meniscal integrity and degradation is not well understood.  

Therefore, future studies blocking the IL-1 pathway may help to identify specific avenues 

of mechanotransduction that lead to matrix degradation and, ultimately, OA. 
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Figure 2-1. Gene expression of ADAMTS-4 and -5 following 0%, 10% or 20% dynamic 
compressive strain administered for 2 h at 1 Hz relative to calibrator gene expression. 
Expression normalized to 18srRNA gene expression for each sample.   * Significantly 
different than 0% for the same zone; ^ significantly different than 10% for the same zone. 
 
 
 

 
Figure 2-2. Immunoblot of endogenously produced protein in superficial (S) and deep 
(D) explants compressed to 0, 10, or 20% strain levels.  
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Chapter 3 – In vitro Inhibition of Compression-Induced 
Catabolic Gene Expression in Meniscal Explants 

Following Treatment with IL-1 Receptor Antagonist2 

Abstract 

Background: Damage to the knee meniscus may result in tears that are difficult or unable 

to heal, and are often treated by partial removal of the damaged tissue. In vitro 20% 

dynamic compressive strains on meniscal tissue explants have shown an increase in 

release of sulfated glycosaminoglycans (GAG) and nitric oxide (NO) from the tissue 

explants and increased expression of matrix metalloproteinases and interleukin-1α (IL-

1α). The objective of this study was to explore the efficacy of IL-1 blockade on the 

expression of a wide range of genes, as well as NO and GAG release, following dynamic 

compression of porcine meniscal explants.  

Methods: Explants were dynamically compressed for 2hrs at 1Hz to 0%, 10%, or 20% 

strain with and without a pre-treatment of 500ng/ml IL-1RA. Relative changes in gene 

expression of IL-1α, MMP-1, -3, -13, A Disintegrin and Metalloproteinase with 

ThromboSpondin 4 (ADAMTS-4), ADAMTS-5, iNOS, Aggrecan, and COX-2, as well 

as changes in NO and GAG release, were measured with standard biochemical assays.  

Results: Expression of IL-1α, MMP-3, MMP-13, and ADAMTS-4 in superficial explants 

was significantly down-regulated at 20% dynamic strain compared to 10% strain 

following treatment with IL-1RA.  GAG and NO release were not significantly 

influenced by IL-1RA treatment. 

Conclusions: Treatment of meniscal explants with IL-1RA inhibited the expression of 

many catabolic genes following a single bout of high dynamic strain. IL-1RA may 

therefore be a potential therapy option during the acute phase of meniscal tear or 

meniscectomy treatment. 

                                                 
2The material contained in this chapter was in part previously published the journal 
Journal of Orthopaedic Science. Reprinted with permission. 



www.manaraa.com

43 
 

Introduction 
Torn menisci are often treated by removal of the damaged portion of tissue, known as a 

partial meniscectomy, which has been shown to lead to changes in the stress and strain 

distribution of the remaining menisci95. Loss of meniscal function results in the inevitable 

onset of OA204. Understanding the load-dependent metabolism of meniscal tissue is 

important for the development of clinically relevant repair and rehabilitation methods 

including tissue-engineered meniscal replacements. 

 

An imbalance of pro- and anti-inflammatory cytokines is understood to play a role in the 

progression of OA130.  This imbalance can ensue following altered mechanical loading, a 

process also known as mechanotransduction. Previous studies have illustrated an 

intrinsic, load-dependent response of meniscal explants to mechanical stimulation32, 134, 

135, 174.  Such catabolism caused by altered loading may contribute to the degradation of 

the meniscal matrix following altered loading, and result in a reduced affinity for the 

meniscus to perform its role in load distribution and joint lubrication. The pro-

inflammatory Interleukin-1 (IL-1) protein discourages meniscal biosynthesis and repair99, 

and its pathway may be activated by excessive dynamic mechanical stimulation32. Both α 

and β isoforms of IL-1 protein bind to the type 1 IL-1 receptor protein (IL-1R1) on the 

cell membrane205. This binding activates the IL-1 Receptor Associated Kinases (IRAK-1 

and IRAK-2)205 which then upregulate further expression and production of IL-1 and its 

inflammatory sequelae206. However, binding of IL-1 isoforms to the IL-1R1 site is 

regulated by IL-1 receptor antagonist (IL-1RA) protein, a naturally occurring peptide that 

is a current therapeutic treatment for rheumatoid arthritis. IL-1RA inhibits the activity of 

IL-1 isoforms by competitively binding to the IL-1R1 site207 and thus preventing the 

downstream signaling cascade of proteinase activity. 

 

Exogenous IL-1α has been shown to inhibit compression-induced proteoglycan synthesis 

in meniscal explants111 and inhibit the healing potential of menisci following tissue 

culture in vitro136. However, the role of endogenously produced IL-1 in meniscal tissue is 

not well understood. Previous studies have discovered the endogenous expression and 
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production of IL-1α following a single 2hr bout of 20% dynamic strain 32, 134, as well as 

the load-dependency in expression of several other catabolic molecules including matrix 

metalloproteinases (MMP) and aggrecanases (ADAMTS) 135. However, it is not yet 

known if the IL-1 pathway alone is responsible for intrinsic meniscal degradation in vitro. 

Therefore, the objective of this study was to explore the role of IL-1 blockade in the 

expression of a wide range of genes following dynamic compression of porcine meniscal 

explants. We hypothesized that the introduction of IL-1RA in the media of meniscal 

explants will inhibit the cascade of catabolic gene expression, the production of nitric 

oxide (NO), and the breakdown of proteoglycan (GAG) released to the media after a 

single bout of dynamic compression.  

 

Materials and Methods 
Tissue preparation 
Stifle joints of 18-week old pigs were dissected using aseptic techniques to expose the 

menisci. Menisci were removed from the joint by excision of horn, ligamentous, and 

synovial attachments. Explants were extracted from the femoral surface of the outer zone 

of each menisci (6-mm diameter) using a biopsy punch. Explants were trimmed to 5mm 

from the deep surface, keeping the femoral surface of the explants intact, and rinsed in 

sterile PBS and equilibrated in the growth media (44.5% Dulbecco’s Modified Eagle 

Medium/Ham’s F12, 10% Fetal Bovine Serum, 1% Penicillin Streptomycin) for a pre-

incubation period of 48h at 37°C (5% CO2). During the last 24h of pre-incubation, 

explants were assigned to one of two different main groups; control and IL-1RA treated. 

Briefly, explants in the control group were incubated in fresh growth media alone for this 

pre-incubation duration as well as during the mechanical test. Explants from the IL-1RA 

treated group were incubated in growth media containing 500ng/ml of recombinant 

porcine IL-1RA (R&D Systems, Inc., Minneapolis, MN, USA, #780-RA) for the 

remaining pre-incubation duration as well as during the mechanical test. This dosage was 

determined in order to assure maximum blockage of the IL-1 pathway 208.   
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Cyclic loading protocol 
Explants were assigned to one of three compressive loading subgroups within each 

treatment group. Under sterile conditions, six explants (3 from control group and 3 from 

IL-1RA treated group) were simultaneously loaded in individual wells in a custom built 

bioreactor to 0, 10 or 20% dynamic compressive strain while maintained at 37°C in 

400µL of growth media either with or without IL-1RA. All explants were dynamically 

loaded for 2h at 1Hz frequency. The bioreactor was carefully cleaned following dynamic 

compression exercises to avoid cross-contamination of media between groups. Following 

mechanical stimulation, explants were halved transversely to separate superficial and 

deep zones, weighed, and placed for 24h in 1mL of post-incubation media (48.5% 

Dulbecco’s Modified Eagle Medium/Ham’s F12, 2% Fetal Bovine Serum, 1% Penicillin 

Streptomycin)  at 37°C (5% CO2). At this time, no explants were stored with recombinant 

IL-1RA. Following post-incubation, explants were treated with RNALater (Ambion Inc., 

Austin, TX, USA) for 24h and stored at -20˚C. 

RNA extraction 
Total RNA was isolated from superior and deep explants according to the protocol 

previously described using a commercially available kit (SV Total RNA Isolation 

System, Promega, Madison, WI, USA) 135. Based on previous studies, 3 explants are 

needed to acquire the appropriate concentration of RNA for reverse transcription 32, 135. 

Therefore, 3 simultaneously loaded explants from each treatment group were combined 

and crushed to a fine powder using liquid nitrogen (n ≥ 5 for each group). The powder 

was immediately added to lysis buffer and stored at 4˚C. A homogenizer was used to lyse 

the cells further. RNA was isolated and DNase-treated using a spin basket assembly and 

then eluted in 100µl of nuclease free water. Integrity of isolated RNA was assessed by 

ethidium bromide staining after running samples on a 1.5% native agarose gel to check 

18S rRNA and 28S bands. RNA samples were then stored at -80˚C until used for reverse 

transcription. At least five independent RNA isolations were performed for each 

mechanical strain group (0, 10, and 20%) for each treatment group. While control 

explants were used in the present study, data from previous experiments involving 
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meniscal explants without IL-1RA were combined if variance of previous and present 

groups were equivalent 135.  

Reverse-transcription-polymerase chain reaction  
RNA quality and concentration immediately prior to reverse transcription (RT) was 

determined by measurement of the optical density at 260 nm on a NanoDrop 2000 

Spectrophotometer (ThermoScientific, Wilmington, DE, USA). First-strand RT began 

with a 12µL reaction consisting of 300ng RNA, 100ng random primers and 0.83mM 

dNTPs. Samples were heated to 65°C for 5min and then placed on ice. At this time, a 7µl 

mix consisting of 4µl of the 5’ buffer provided with the Superscript II (Invitrogen 

Corporation, Carlsbad, CA, USA), 0.029M dithiothreitol (DTT) and 40units of RNase 

OUT (Invitrogen Corporation, Carslbad, CA, USA) were added to each reaction. The 

reactions were incubated at 25˚C for 2min and again placed on ice while 50units of 

Superscript II were added to each reaction. Tubes were then incubated at 25˚C for 10min 

followed by 42˚C for 50min, 70˚C for 15min, and 4˚C for 5min. Samples were placed on 

ice and treated with RNase H (New England BioLabs, Ipswich, MA, USA), bringing the 

final reaction to 20µl. Samples were incubated at 37˚C for 20min, followed by 29min at 

65˚C and 5min at 4˚C. All reactions were performed in an Eppendorf Mastercycler 

Gradient machine (Westbury, NY, USA). 

Real-time quantitative-PCR 
Real-time quantitative PCR (q-PCR) reactions were performed with SYBR Green 

fluorescence mix (Absolute QPCR SYBR Green Mix, Abgene, Inc, NY; Fast SYBR 

Green Master Mix, Applied Biosystems, Foster City, CA). Results of copy number 

fluorescence threshold (Ct) of each gene were normalized to a housekeeping gene 

(Ribosomal 18sRNA). A calibration control sample was run on each plate and expression 

of the housekeeping gene for each sample was run in each reaction alongside each gene 

of interest. Q-PCR was performed in 25µL reaction volumes using gene specific primers 

designed from partial or complete Sus scrofa cDNA sequences available from National 

Center for Biotechnology Information (NCBI), or by using primers from the literature 135 

(Table 3.1). Reactions for most genes (IL-1α, MMP-1, -3, -13, COX-2, iNOS and 18s 
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[when used a as a housekeeper for these genes]) contained 7.5ng of cDNA, 0.2mM of 

each primer, 12.5mL SYBR Green Fluorescence Mix. For the remaining genes 

(Aggrecan, ADAMTS4, ADAMTS5), 15ng of cDNA was used in each reaction, with 

0.1mM of each primer, 12.5mL SYBR Green. All qPCR reactions were run on a 

StepOnePlus Real Time PCR system (Applied Biosystems, Foster City, CA), and began 

with an initial denaturation of 15 min at 95˚C. This was followed by 40 cycles of: 95˚C 

for 15 s, 60 s at denaturation temperature (Table 3-1) and 40s at 72˚.   This was followed 

by a dissociation curve analysis to verify the specificity of the amplification. All samples 

were run in duplicate and Ct values were obtained using StepOne Software v2.1 (Applied 

Biosystems, Foster City, CA). A dissociative curve was run with each plate setup to 

confirm regularity of the tests. Sample Ct were analyzed using the Pfaffl method 209 by 

which the ratio of the target gene to the housekeeping gene is quantified with respect to 

the calibrator using Equation 2-1. 

Statistical analysis 
All data are presented as mean ± standard error. Statistical analyses comparing levels of 

assay results (gene expression) between control and IL-1RA treated samples was 

performed using a two-way analysis of variance (2-way ANOVA) with treatment and 

strain level assigned as independent variables. A post-hoc Fisher’s protected least squares 

difference was carried out.  P < 0.05 was considered significant.  
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Table 3-1. Primer sequences used for specific genes. 

Gene Sequences Denaturation Reference 
IL-1α 5' AGACACCCAAAACCATCAAAG 59˚C 32 
 3' TCACAGGTAAGTAGACACCAG   
iNOS 5' ACGCTCAGCTCATCCGGTAT 61˚C 32 
 3' CACTTCAGCTCCAGCTCCTG   
MMP-1 5' GGACCTGGAGGAAACCTTGCT 59˚C 135 
 3' GCCTGGATGCCATCAATGTC   
MMP-3 5' GCCTGGATGCCATCAATGTC 59˚C 135 
 3' TCTTGGAGAATGTAAGCGGAGT   
MMP-13 5' GATCCCCATTTTGATGATGATGAA 59˚C 135 
 3' GTCTTCATCTCCTGGACCATAGAGAGA  
COX-2 5' TCAACCAGCAATTCCAATACC 59˚C 135 
 3' ATTCCTACCACCAGCAACC   
18s 5' GCAAATTACCCACTCCCGAC 55˚C 32, 135 
 3' CGCTCCCAAGATCCAACTAC   
Aggrecan 5' ACAGGTGAAGACTTTGTGGAC 61˚C 135 
 3' AGTCAGTGAGTAGCGGGAGG   
ADAMTS4 5' AGGAGGAGATCGTGTTTCCAGAGA 55˚C 135 
 3' AAAGGCTGGCAAGCGGTACAACAA   
ADAMTS5 5' TTCGACATCAAGCCATGGCAACTG 55˚C 135 
 3' AAGATTTACCATTAGCCGGGCAGG   
 

Results 

Influence of IL-1RA treatment following dynamic compression of 
meniscal explants 
Gene expression with and without IL-1RA following dynamic compression  
Although trends within genes were similar between superficial and deep explants, only 

superficial zones unveiled a significant response to IL-1RA treatment. A significant 

decrease was observed in expression of IL-1α, MMP-3, MMP-13, and ADAMTS-4 genes 

for superficial explants treated with IL-1RA and exposed to large dynamic strains 

compared to untreated explants (Figure 3-1). ADAMTS-4 was not only significantly 

decreased at large dynamic strains, but demonstrated a significant decrease in the 
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superficial zone following all three levels of dynamic loading when treated with IL-1RA 

compared to untreated. Interestingly, COX-2 gene expression in the superficial zone was 

significantly upregulated following IL-1RA treatment with 0% dynamic loading 

compared to the untreated explants (Figure 3-2). Although iNOS showed a trend toward 

decreased expression with IL-1RA treatment, this change was not significant. There was 

no significant difference in Aggrecan gene expression between IL-1RA treated and 

untreated explants for any dynamic compression level (data not shown).  

Discussion 

The present study is the first of its kind to explore the endogenous role of the IL-1 

pathway on knee meniscal biochemistry following dynamic loading. The effects of 

mechanical loading alone on meniscal explants have been previously investigated in 

several studies. Specifically, the role of mechanical loading on the inflammatory 32 and 

catabolic 174 responses of this soft tissue have been suggested to contribute to its 

degradation and inhibited healing response. Previously, we have shown that a strain 

magnitude dependency exists for the expression of IL-1α, as well as select MMPs and 

ADAMTS molecules, in meniscal explants following dynamic compression32. 

Additionally, previous research has established the influence of exogenous IL-1 on the 

breakdown of cartilage 210-212 and meniscus 139 in vitro. For example, exogenous IL-1 

added to the media during incubation of explants has been shown to increase 

aggrecanolysis 210 and inflammatory mediators 213 in cartilage. With the present study, the 

relationship between endogenous IL-1 and dynamic compression in the potential 

degradation of the meniscus is suggested. 

The present study investigated the role of IL-1RA on the transcriptional behavior 

of meniscal explants in vitro, particularly of the catabolic nature. It has been previously 

established that the activation of IL-1 leads to a cascading effect on the catabolic 

response of soft tissues 130, 214 (Figure 3-3). The role of IL-1RA in antagonizing the 

catabolic cascade of IL-1 is reinforced in this study. It is likely that individual cells 

express IL-1α in a strain-dependent manner, yet the secretion of IL-1α and its 
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perpetuating influence on surrounding cells is blocked by IL-1RA (Figure 3-3). 

Therefore, although the endogenous expression of individual cells is likely not inhibited 

by IL-1RA, the cascading influence of IL-1 on the catabolic response of the meniscus 

was shown to be efficacious in this study. 

Previous work by Gupta et al demonstrated that the endogenous response of 

meniscal explants involves the transcription of the α-form of IL-1, yet the β-form may not 

be transcriptionally activated following dynamic compression of this particular tissue in 

vitro 32. Based on such findings, the present study only measured the relative gene 

expression of IL-1α. Differences in the two isoforms lie in their maturation modes 215 and 

affinity for IL-1 receptors 216. The activation of these two cytokines is dependent on cell 

derivation 217, and stark differences between the two isoforms in gene expression 

regulation, stability, and secretion make these molecules quite distinct from each other 
218.  The nature of IL-1β and its expression following mechanical loading may have been 

elucidated in expression profiles of the culture media, as this molecule is in its active 

form extracellularly. However, in this and previous studies, RNA was not harvested from 

the media32, 135. Future studies investigating gene expression of both tissue and media 

may identify the relationship of strain-dependent expression of both IL-1α and IL-1β. 

It is interesting to note that in the current study, the superficial zone demonstrated 

a transcriptional response to IL-1RA treatment following large dynamic strains different 

than that of its deep counterpart. This could in part be due to differences in cell type 

populations between superficial and deep zones58. Previous works have investigated the 

differences in gene expression between deep and superficial locations in the 

meniscus32,135. In a partial meniscectomy model, Kobayashi et al found a distinct influx 

of nitrotyrosine in the superficial zones compared to the same zone in sham operated 

rabbits11. It is likely that the superficial and deep zones of the meniscus respond 

differently; however, the data presented here should be taken with caution, as the gene 

expression of MMP-1, -3, ADAMTS-4, and ADAMTS-5 from deep explants did appear 

to be influenced by IL-1RA treatment, although such changes were not statistically 

significant. Additionally, it is possible that the strain applied to the whole explant was not 

equivalent throughout the depth of the tissue. Gupta et al demonstrated using finite 
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element modeling that the size, shape, and position of an individual cell in an explant 

dictates its localized mechanical environment118.  It is possible that the superficial zone 

saw more strain than the deep zone. Also, the compliance of the tissue may have varied 

throughout the depth of the explant potentially due to differences in mechanical stiffness 

between zones. However, differences in micromechanical stiffness between different 

depths of the menisci are not known. Future studies should investigate how changing the 

boundary conditions of dynamic loading on meniscal tissue can influence the depth-

dependent biochemical and mechanical nature of this tissue. 

The use of corticosteroids219, NO inhibitors 111, and MMP inhibitors140 have been 

previously shown to reduce the catabolic effects of IL-1 in vitro. However, none of these 

treatments have been completely efficacious in blocking IL-1 activity and subsequent 

catabolic-induced damage completely, likely because they act downstream of initial IL-1 

binding 218. The results of the present study illustrate the strong influence of the pre-

emptive blockade of IL-1 on MMP and aggrecanase expression, as well a trend to reduce 

GAG released to the media, following a single bout of large dynamic compression.   

Even still, the complete blockade of NO release was not illustrated in the present study 

following treatment with IL-1RA.  

The release of NO135 and iNOS/COX-2 gene expression of meniscal explants, 

although not influenced by treatment with IL-1RA, may elucidate a different pathway 

involved with meniscal mechanotransduction and degradation.  Other researchers have 

suggested the critical role of COX-2 in the pathogenesis of OA175. Although IL-1β is 

known to induce NO release 220, 221 and COX-2 production 222 in fibroblast/chondrocyte 

cells, there are other established pathways that can be involved. For example, others have 

shown that the induction of COX-2 and iNOS production occurs following treatment of 

chondrocytes with advanced glycation end products (AGE), and NO release can be 

influenced through the extracellular signal regulated protein kinase (ERK) and c-jun N-

terminal kinase (c-Jun) pathways 223. Such findings may suggest a role of alternate 

modalities in fibrochondrocytes in the degradation of this soft tissue. It is also possible 

that the expression of iNOS and COX-2, as well as the release of NO, in the present study 
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may have peaked prior to the 24hr post-incubation period and subsequently dropped 

below levels which may have indicated upregulation and increased production which 

were missed in this study.  

Clinical treatments of OA with anakinra, a recombinant form of IL-1RA, have not 

demonstrated severe adverse effects to patients 150, suggesting its safety and tolerance as 

a form of intra-articular treatment. Unfortunately, clinical investigations using anakinra in 

patients with OA have not proved to be beneficial in sidelining the progression of 

degeneration and pain associated with the disease 150. It is possible that the delayed 

intervention with IL-1RA or other anti-inflammatory therapies until after OA is 

diagnosable may be a futile attempt. Interestingly, genetic screening for IL-1RA 

haplotypes may provide information to clinicians about high- and low-risk patients and 

may also suggest IL-1 activity as a determinant for OA severity in the knee 224. Both the 

initial pro-inflammatory response following trauma and the risk factors associated with 

OA development must therefore be further investigated to elucidate the nature of soft 

tissue degeneration.  Nonetheless, these investigations, along with the present study, may 

suggest an alternative pathway of tissue degradation in addition to the IL-1 pathway. 

Conclusions 

This is the first study of its kind to explore the role of endogenous IL-1 on meniscal 

explants following various levels of dynamic compression. A significant down-regulation 

of several catabolic molecules following IL-1RA treatment was uncovered, underlining 

the endogenous response of the meniscus itself to the IL-1 pathway. However, it was 

interesting that previous work did not find a significant influence of IL-1RA on the 

release of NO from meniscal explants into the media135, which was reflected in the 

present study using indirect methods (iNOS gene expression). Pathways other than IL-1 

are likely involved in the catabolic cascade that leads to tissue degradation, and various 

cell types of tissues in the knee may behave differently as well. Therefore, future 

investigations using an in vivo model are needed. 
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Recommendations 

Long-term mechanotransductive response of isolated meniscal tissue should be 

investigated in order to better characterize this tissue’s role in inflammation and 

development of OA. Often, this tissue is overlooked as a contributor to the development 

and progression of OA, although it is well known that preservation of meniscal integrity 

is beneficial in delaying knee joint degeneration. Additionally, it is known that the 

meniscus is an inhomogeneous and anisotropic material, yet few have investigated 

regional differences in its mechanical properties and biochemistry. Therefore, region- and 

strain-dependent characterization of the meniscal biochemistry with and without IL-1RA 

should be performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(next page) Figure 3-1. Relative expression of catabolic genes for both superficial and 
deep explants with and without IL-1RA treatment. * = significant difference in 
expression at 0% strain for same treatment; ^ = significant difference in expression at 
10% strain for same treatment; # = significant difference in expression at 20% strain for 
same treatment; arrow = significant difference in expression between treatment groups; 
n.d. = no detectable gene expression. 



www.manaraa.com

54 
 

 



www.manaraa.com

55 
 

 
 

 
Figure 3-2. Relative expression of COX-2and iNOS, genes for both superficial and deep 
explants, as well as aggrecan gene for superficial explants only, with and without IL-1RA 
treatment. * = significant difference in expression at 0% strain for same treatment; arrow 
= significant difference in expression between treatment groups. 
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Figure 3-3. Schematic of mechanically-induced IL-1 pathway and IL-1RA blockade. 
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Chapter 4 – Spatial Distribution of Sulfated GAG in 
Healthy Lapine Menisci3 

Abstract 

Introduction: The menisci have crucial weight-bearing roles in the knee. Regional 

variations in structure and cellularity of the meniscus have only been minimally 

investigated. Therefore, the goal of this study was to illustrate the regional cell density, 

tissue area, and structure of healthy lapine menisci.   

Methods: Skeletally mature Flemish Giant rabbits were used for this study. Upon 

sacrifice, menisci were removed, fixed in formalin, and cryosectioned. Histological 

analysis was performed for the detection of sulfated glycosaminoglycans (GAG), 

collagen types I and II, cellular density, and tissue area. ANOVA and paired t-tests were 

used for testing of statistical significance.   

Results: Glycosaminoglycan coverage of the medial meniscus significantly varied 

between regions, with the anterior region demonstrating significantly more GAG 

coverage than the posterior region. Inter- and intrameniscal comparisons revealed 

variations between zones, with trends that outer zones of the medial menisci had less 

GAG coverage. Collagen types I and II had marked characteristics and varying degrees of 

coverage across regions. Tissue area varied between regions for both medial and lateral 

menisci. Cellular density was dependent on region in the lateral meniscus.   

Conclusions: This is the first study to illustrate regional and zonal variation in 

glycosaminoglycan coverage, size, and cellular density for healthy lapine meniscal tissue. 

This data provides baseline information for future investigations in meniscal injury 

models in rabbits.  

                                                 
3 The material contained in this chapter has been published in the journal The Anatomical 
Record. Reprinted with permission. 
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Introduction 

Menisci are C-shaped fibrocartilagenous structures that have crucial weight-bearing roles 

in the knee, including shock absorption, joint lubrication, and proprioception 55, 100. 

Menisci distribute load between the femur and tibia, as the triangular cross-section of this 

tissue aids in joint alignment and stabilization 86, 225, 226. During compression, the 

extracellular matrix of the meniscus has biphasic properties to help in cushioning and 

lubrication of the joint. This function is attributed mainly to the network of collagen 

fibrils and hydrophilic nature of glycosaminoglycans (GAG) within the tissue 227-230. 

Damage or removal of the meniscus has been shown to lead to osteoarthritis (OA) 231-233.  

 For over 30 years, animal models have been used to study the etiology of diseases as 

well as potential repair and/or replacement strategies234 . The rabbit has frequently been 

used as a model for OA 235.  Recently, a lapine model has been developed to investigate 

the influence of traumatic impaction and ACL rupture on the remaining soft tissue 

structures of the knee235. This study showed macroscopic damage to the menisci 

following traumatic knee injury, with the extent and location of meniscal damage 

differing compared to the surgically transected ACL model.  However, prior to assessing 

further changes in meniscal tissue structure using this in vivo animal model, it is 

important to first characterize the native tissue structure.     

 

The meniscus is an inhomogeneous material made several different matrix molecules 

including glycosaminoglycans (GAG), collagens, and proteoglycans. Although 

differences in regional material properties have been investigated in the meniscus 236, 

regional variations in structure and cellularity have only been minimally investigated in 

the meniscus 80, 83, 236, 237.  Additionally, most researchers focus mainly on medial menisci 
79, 159, 238-242, even though acute injuries can occur in both medial and lateral menisci 243-

248. Similarly, although the meniscus is inhomogeneous, region-dependent tissue 

variations in matrix molecules have only been briefly discussed 83, 249, 250. It is well known 

that the menisci contain mostly type I collagen and that type II collagen is also present in 

the inner, hyaline-like zone 251-254.  However, the distribution of these two important 
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macromolecules is not well understood across regions and zones of both medial and 

lateral menisci. Meniscal cell type has been documented to be zone-specific for human 

and rabbit 57, 58, yet the density and distribution of cells in the meniscal body has not yet 

been investigated for any species. Unfortunately, the relationship between meniscal 

cellular density and tissue structure is not well understood 60, 117, 236, 237, 255, 256. This is 

likely due to the various types of animal models used in meniscal research 236, 253. 

Knowing the architecture and cell density is vital in understanding potential injury 

response and repair following meniscal damage. Therefore, the goal of this study was to 

illustrate the regional cell density, tissue area, and collagen/GAG structure of healthy 

lapine menisci. Understanding the distribution of cell density and glycosaminoglycans in 

the normal lapine meniscal tissue will help elucidate findings following various degrees 

of degeneration and degradation in rabbit OA models. 

Materials and Methods 

Five skeletally mature Flemish Giant rabbits were used for this study. The experiment 

was approved by Michigan State University’s Institutional Animal Care and Use 

Committee. Animals were sacrificed at 6-12months of age using 85.9 mg/kg BW 

Pentobarbital I.V. Left and right menisci of both limbs were freed of ligamentous 

attachments and synovium. Immediately after removal, menisci were rinsed in PBS and 

then fixed in 10% formalin. After fixation, whole menisci bodies were then fixed in 

OCT-30% sucrose blend (Pelco Int., Redding, CA, USA) for 48- 72hours. After OCT 

fixation, the menisci bodies were sectioned into anterior (A), central(C), and posterior (P) 

regions using a custom cutting tool designed with three blades permanently fixed at 45˚ 

angles with respect to each other (Figure 4-1). Sections were covered with OCT 

embedding matrix, and then flash frozen with liquid nitrogen. Six (6)μm cryosections 

were obtained parallel to sectioning surface and subsequently stained for sulfated 

glycosaminoglycans (GAG), collagen I, collagen II, or cell nuclei. 



www.manaraa.com

60 
 

Detection of Sulfated GAG  
Slides were stained using Fast Green-Safranin O (SafO) solution for detection of GAG 

coverage. With FG-Saf O staining, mucins and cytoplasms stain blue-green, nuclei stain 

black, and sulfated GAGs stain red. Sections were then imaged using an Olympus AX70 

Microscope and DP70 camera. Red coverage of SafO staining was semi-quantitatively 

analyzed using Image J software (NIH, Bethesda, MD). Briefly, color images were 

converted to R-G-B stack and viewed as a grayscale image under green stack. With green 

stack, tissue appeared light and SafO positive stained regions appeared dark. Images were 

analyzed using the threshold function with a black to red ratio of at least 1:3. The 

aggregate percentage of area (SafO-positive) was then measured for each image in the 

following zones: inner 1/3, middle 1/3, outer 1/3, as well as the entire section, for slides 

obtained from the anterior, central and posterior regions. Briefly, the total length of the 

meniscal section was measured using a line in ImageJ from the innermost point of the 

section and extended to the outer edge, halfway between the femoral and tibial surfaces 

of the meniscus. Then, the line was shortened to one-third the original length. Original 

images were used to verify correct threshold of red pixels in the R-G-B stacked images. 

Collagen Type I and II Distribution 
Immunohistochemistry was performed with antibodies raised against collagen types I and 

II (Medicorp, Montreal, Quebec). The immunohistochemical localization techniques for 

collagen types I and II have been described previously 257. Briefly, sections were 

sequentially digested with pronase (1mg/ml) and hyaluronidase (10mg/l) for 30 minutes 

each at 37˚C. Sections were then blocked with pre-incubation buffer (10% goat serum, 

1% bovine serum albumin in PBS) at room temperature for 2 hours. Sections were 

incubated overnight with monoclonal mouse anti-human antibodies against collagen 

types I (1:400) and II (1:5000) (Medicorp, Montreal, Quebec). Biotinylated goat anti-

mouse secondary antibodies were detected with Streptavidin-labeled AlexaFlour 488 

(Invitrogen, Carlsbad, CA) and were additionally stained using propidium iodide (1:500 

in PBS) for cellularity. Negative controls were determined using the above methods 

without incubation with the primary antibodies. A positive control was used for both 
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antibodies on serial sections of human ligamentous tissue and articular cartilage, which 

are mostly collagen type I and collagen type II, respectively.  Each section was then 

imaged using fluorescence microscopy and analyzed under blind conditions.  

Cell Density and Tissue Area Measurements 
Cells were detected using a propidium iodide staining technique and photographed using 

an Olympus AX70 microscope and DP70 camera. In brief, slides were placed in Coplin 

jars and fixed using 4% paraformaldehyde (PFA). Next, slides were washed using PBS 

(pH 7.4), removed from Coplin jars, and dried. Tissues were covered by a proteinase K 

dilution (10 mg/ml) and fixed again using 4% PFA. Slides were then immersed in a 

propidium iodide solution (1 µg/ml in PBS) to stain for cell nuclei. Each section was then 

imaged using fluorescence microscopy.  Image analysis using CellC (Tampere University 

of Technology, Tampere, Finland) was performed to determine total cell count using an 

empirically determined cluster size. MetaMorph imaging software (Molecular Imaging, 

Downington, PA, USA) was used to determine the tissue area of each region. Cell density 

was determined using the total cell count (cells) per tissue area (mm2). 

Statistical Analysis 
Analysis of variance (ANOVA) was performed using Minitab 15 statistical software 

(Minitab Inc., State College, PA). Descriptive statistics were calculated for all measures. 

Paired t-tests were performed to determine differences between left and right limbs. One-

way ANOVA was performed for regional comparisons between medial and lateral 

menisci. One-way ANOVA was also performed within regions for zonal comparisons.  

Post-hoc t-tests with pair-wise comparisons within each animal of menisci (medial vs 

lateral) and regions (A vs C, A vs P, and C vs P) were used to determine regional and 

zonal differences. Preliminary analyses demonstrated no statistically significant 

differences between left and right limbs. Therefore, left and right limb data were 

averaged for respective regional and zonal comparisons. Statistical power was established 

to be ≥ 0.80 with the sample size used in this study. 
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Results 

Glycosaminoglycan coverage was significantly higher in the anterior region (24.44 ± 

8.65%) of the medial menisci compared to the central (5.41 ± 1.70%) and posterior (4.35 

± 2.29%) regions (Figure 4-2). Within the medial menisci, the anterior regions showed 

greater GAG coverage compared to the central and posterior regions.  Differences 

between zones in A and C regions of medial menisci were only significant for the outer 

region (Figure 4-3). Within the central region of the lateral menisci, the inner zone (2.28 

± 1.06%) showed significantly less GAG coverage than the outer zone (19.62 ± 6.90%), 

with this same trend occurring in the lateral posterior region (Figure 4-3).  The amount of 

GAG coverage between the central region of the two menisci (medial and lateral) was 

significantly different for two of the three zones; outer and inner zones. To note, the 

medial meniscus central region increased in GAG coverage moving from the outer zone 

to the inner zone, the opposite trend was seen for the lateral meniscus (Figure 4-3). 

 

Distribution of collagen type I (Figure 4-4) and type II (Figure 4-5) varied qualitatively in 

both medial and lateral menisci.  In general, medial and lateral menisci stained heavily 

positive for collagen type I throughout all regions. However, the deep body of the 

menisci sometimes lacked collagen type I staining. Outer zone and peripheral localization 

of collagen type I was apparent in all regions of both menisci (Figure 4-4).Collagen type 

II appeared to be primarily localized at the peripheral surfaces of both medial and lateral 

menisci. In some regions, this localization represented a distinct continuous thickness, 

especially in the central and posterior regions (Figure 4-5). Again, the deep body of the 

menisci seemingly lacked collagen type II positive staining (Figure 4-5). 

 

Differences were observed between menisci in tissue area, with the lateral meniscus 

demonstrating significantly greater tissue area than the medial meniscus in the central and 

posterior regions (Figure 4-6). For both the medial and lateral menisci, the anterior and 

posterior regions demonstrated a significantly greater area compared to the central region 

(Figure 4-6). Furthermore, the anterior region was also significantly larger than the 
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posterior region in the medial meniscus (Figure 4-6).  Further investigation of tissue area 

through the outer, middle and inner zones of the menisci confirm the triangular cross-

section of the menisci with the outer zone being significantly larger in area, with 

decreasing tissue area in the inner zones (Figure 4-7). In 6 of the 9 zones studied, the 

lateral meniscus was significantly larger than the medial meniscus (Figure 4-7). 

 

Cell density measurements also differed across regions and zones. The posterior region of 

the lateral meniscus was significantly more cellular than any other region in both medial 

and lateral menisci, and this was the only region where the cell density between medial 

and lateral menisci significantly differed (Figure 4-8).  Within the medial meniscus, the 

inner zone of the anterior region was more densely populated with cells than the same 

zone of the posterior region (Figure 4-9).  The outer zones of the central and posterior 

region, as well as the inner zone of the posterior region, were significantly more cellular 

in the lateral menisci than the respective zones of the medial menisci (Figure 4-9). 

Cellular density between zones, within a given region, also varied (Figure 4-9).   The 

outer and middle zones of the posterior region were more densely populated with cells 

compared to its respective inner zones (Figure 4-9).   

Discussion 

This is the first study to illustrate the complete regional and zonal variation in 

glycosaminoglycan coverage, size, and cellular density of meniscal tissue in any species. 

This study emphasizes the importance of location-dependent histological properties of the 

lapine menisci. Future studies that investigate menisci of rabbits as well as other species 

should be mindful of the region and zonal differences between medial and lateral 

locations of this inhomogeneous tissue. In order to better understand currently 

implemented animal models used to investigate joint disorders such as degenerative joint 

disease, we must first understand the normal physiology and biology of tissues such as 

the meniscus.  
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Sulfated glycosaminoglycans are charged sugar chains that adhere to proteins and attract 

water molecules. This provides the tissue with biphasic properties, as the water can exude 

from the tissue with rate-dependent characteristics. Therefore, understanding the 

distribution of sulfated GAGs is important in the characterization of the meniscus. In this 

study, we found that the anterior region of the medial meniscus demonstrated 

significantly higher coverage of sulfated-GAG positive staining, which likely influences 

the region-dependent mechanical properties of the menisci.   Others have suggested 

regional variations in material properties across the medial meniscus, including greater 

stiffness in the anterior region of human and rabbit medial menisci 236 and correlation 

between GAG content and compressive and storage moduli in human menisci 80. Our 

results reflect similar distributions in GAG measures to Bursac et al’s work and expand 

on their findings by including in-depth zonal comparisons of GAG coverage.   The 

current study emphasizes the use of rabbits as an animal model for meniscal damage and 

joint malalignment is appropriate given the similarities between GAG coverage and 

mechanical properties between human and lapine menisci. Although the approach for 

determining GAG coverage from our implementation of histology is not a direct 

quantitative measure of GAG content, previous researchers have shown a strong 

correlation between our method and those using biochemical assays specific for sulfated 

GAG 258.  

 

The regional distribution of collagen type I and II has rarely been discussed in the 

literature 252. For example, it is known that collagen fibrils at exterior surfaces of the 

menisci are circumferentially oriented, providing resistance to hoop stresses applied to 

the meniscus during loading 259. The present study highlights the distribution of collagen 

types I and II through the lapine medial and lateral menisci. The heavy staining of 

collagen type I was to be expected, as collagen type I accounts for more than 90% of 

meniscal tissue collagen in other species 55, 252, 260. However, the regional and zonal 

distribution of collagen type I in rabbits had not yet been explored through 

immunohistochemistry. It is also interesting to note that the distribution of collagen type 

II varies across regions and zones in the lapine menisci. In this study, we have shown 
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qualitatively that collagen type II is distributed around the periphery of the tissue, 

suggesting its role as a cartilage-like boundary for the meniscal body. This study showed 

that the middle and inner zones of the medical meniscus contain more sulfated GAG, 

who negative charge attracts and holds water within the tissue. A reduced density of 

collagen Type I and II matrix, particularly in the middle region of the tissue, may provide 

the GAG with more space to create a meshwork for control of tissue permeability and 

hydration 261. Although there may be a relationship between the collagen network and 

GAG coverage, we did not quantify collagen coverage or correlate the spatial distribution 

of collagen relative to GAG in the present study.  

 

This study is the first to illustrate tissue area measurements of the lateral menisci for 

rabbit. Interestingly, this study observed that the central region areas for both the medial 

and lateral menisci were smaller than their anterior and posterior counterparts. This 

increased area in the anterior and posterior areas of the menisci is likely related to the fact 

that at the anterior and posterior horns the menisci attach to the underlying subchondral 

bone so that the circumferential hoop stress developed within the main body of the soft 

tissue meniscus can be easily transferred to the more rigid subchondral bone without 

rupture 231, 259. Additionally, as loading increases, as seen with developmental gait 54, 

there is a need for an increase in the attenuation of load transmitted through the menisci 

to the underlying articular cartilage. Thus, it is possible that the meniscal tissue area may 

adapt and become thicker in certain regions to compensate for these increased loads. 

Further developmental studies are needed to explore these ideas.  Others have reported 

the tensile strength in the anterior region of the medial menisci to be greater than the 

posterior 259. The lateral posterior attachment is unique in the rabbit as it attaches only to 

the medial femoral condyle 259.  Therefore, geometrical differences may play a role in the 

loading characteristics of the menisci, and vice versa. 

 

The meniscus is an inhomogeneous material made of varying matrix molecules including 

collagen I and II, and the orientation and composition of these matrix molecules allows 

the material to behave differently depending on directional loading 238, 262. We chose to 
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investigate the distribution of these two molecules because of the different roles these 

molecules play in biological tissues. For example, collagen type I resists tensile stresses, 

and supplies the meniscus with the ability to withstand hoop (or circumferential) stresses 

during loading. Collagen type II, which is the predominant collagen in articular cartilage, 

plays an important role in the compressive properties of tissues. The two different 

collagen types provide the menisci with the ability to perform a variety of mechanical 

functions. The distribution of these two important macromolecules likely plays a role in 

the tissue’s mechanical properties, which may influence other aspects of the tissue 

investigated in this study. Previous research using rabbit models have shown that the 

lateral anterior region may be subjected to higher loads than the medial anterior region, 

causing an increase in contact pressure 263. Lower observable cell density in the anterior 

region may be attributed to the increased stiffness of the tissue in the anterior region, as 

cell mobility and infiltration may be difficult through stiffer extracellular matrix 236.  

 

The importance of this study focuses on the future use of certain species in animal 

osteoarthritis models. Although OA is defined as the onset and progression of cartilage 

damage and degradation, the meniscus likely plays a crucial role in the disease’s 

prevention and progression 159, 264-267. Altered loading, remodeling, and disuse can result 

in changes to the meniscus 38, 112, 113, 268, 269.  Commonly used as an OA animal model, the 

rabbit has demonstrated strong changes in meniscal morphology following anterior 

cruciate ligament transection (ACLT) 10, 159, 161. By underlining the regional and zonal 

differences in cellularity, tissue area, and sulfated GAG coverage in the healthy rabbit, 

we will be able to explore how various OA models can influence such distributions. 

Previously, Sweigert et al demonstrated that porcine has a higher aggregate modulus in 

the anterior region of the medial meniscus compared to central and posterior regions 236. 

Prior to this, Nakano et al showed that the anterior region of the porcine menisci 

demonstrates significantly higher GAG staining in this region 237. Interestingly, some 

researchers have reported similar trends between rabbit and human compressive moduli 

for meniscal regions 236. Such comparisons follow similar trends as the GAG coverage 

measured for rabbits in this study. However, recent work by Chevrier et al has 
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comparatively assessed both rabbit and sheep as potential animals for use as repair 

models 253. Their findings suggest the preferential use of sheep over rabbit for in vivo 

assessment of meniscal repair based on cross-sectional area, vascular penetration, and 

lamellar layer. However, rabbits remain a convenient and accessible animal for 

laboratory investigations in OA. Structurally, the rabbit model mimics meniscus 

characteristics similar to that of human, making it a valid model for future use in animal 

studies.  

 

In summary, the use of animal models is important for laboratory-based investigations 

into trauma-induced injuries to the soft tissues of the knee. Our study outlines the 

distribution of sulfated GAGs, cellular density, and size of healthy rabbit menisci to be 

used for comparative purposes in future OA investigations. This is the first study to 

investigate the coverage of sulfated GAG and the density of cells in the various regions 

and zones of both medial and lateral menisci. The findings presented in this study will aid 

in future investigations of damage to the menisci and knee, and provides new metrics of 

which can be used to study longitudinal progression of meniscal characteristics 

associated with degenerative joint disease in a rabbit model. 
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Figure 4-1. Sectioning of meniscal regions using a custom cutting tool assembled with 
blades at 45˚ separation from each other. Zonal regions highlighted in anterior cross-
section. 
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Figure 4-2. (A) Regional comparisons in percentage of GAG coverage between medial 
and lateral menisci and (B) representative SafO histological images.  
β= significantly different than other regions within same menisci. Scale bar is 100µm. 
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Figure 4-3. (A) Zonal comparisons of percentage of GAG coverage in medial and lateral 
menisci and (B) representative SafO histological images. c = significantly different than 
same zone of central region within the same menisci, p = significantly different than 
same zone in posterior region within the same menisci; * = significantly different 
between zones. Scale bar is 2mm. 
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Figure 4-4. Collagen type I immuno-fluorescence staining of medial and lateral meniscal 
sections for anterior, central, and posterior regions. Scale bar = 2mm. 
 

 
Figure 4-5. Collagen type II immuno-fluorescence staining of medial and lateral 
meniscal sections for anterior, central, and posterior regions. Scale bar = 2mm. 
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Figure 4-6. Regional comparisons in tissue area (mm2) between medial and lateral 
menisci. * = significantly different than same region of medial menisci; α = significantly 
different than central region within same menisci; γ= significantly different than posterior 
region within same menisci. 
 

 
Figure 4-7. Zonal comparisons in tissue area (mm2) between regions of the medial and 
lateral menisci. m = significantly different than same zone of medial menisci; a = 
significantly different than the same zone in the anterior region; c = significantly different 
than same zone of central region within the same menisci; * = significantly different 
between zones. 
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Figure 4-8. Regional comparisons in cell density (cells/mm2) between medial and lateral 
menisci. β= significantly different than other regions of same menisci; * = significantly 
different than same region of medial menisci 

 
Figure 4-9. Zonal comparisons in cell density (cells/mm2) between regions of the medial 
and lateral menisci. p = significantly different than the same zone in the posterior region; 
m = significantly different than same zone of medial menisci; * = significantly different 
between zones. 
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Chapter 5 – Traumatic Anterior Cruciate Ligament Tear 
and its Implications on Meniscal Degradation4 

Abstract 

Introduction: Injury patterns of the meniscus following impact trauma resulting in ACL 

rupture are not well understood. This study explored the spatial and temporal distribution 

of meniscal tears in a novel in vivo lapine model.  

Methods: Rabbits were subjected to either tibiofemoral impaction resulting in ACL 

rupture or surgical ACL transection. Meniscal damage was assessed acutely and after 12-

weeks for traumatically torn, and after 12-weeks in ACL transected animals. 

Morphological grading was assessed using previously established criteria, and 

descriptions of meniscal damage were diagnosed. Histological assessment was also made 

on 12-week traumatically torn and ACL transected animals using Fast-Green/Safranin-O 

staining.  

Results: Traumatic ACL rupture resulted in acute tears predominately in the lateral 

menisci. Animals subjected to both surgical transection and traumatic ACL rupture 

experienced degradation of the lateral and medial menisci 12 weeks after injury. 

However, traumatic ACL rupture resulted in acute lateral damage and chronic 

degradation of the menisci, as well as more severe degradation of the menisci 12 weeks 

after injury.  

Conclusions: Both acute and chronic changes to the meniscus following traumatic 

impaction were observed. This research has implications for the future use of lapine 

models for osteoarthritis, as it incorporates traumatic loading as a more realistic mode 

contributing to the progression of OA compared to surgically transected models. 

                                                 
4 The material contained in this chapter was previously published in the journal Journal of 
Surgical Research. Reprinted with permission. 
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Introduction 

The menisci play a crucial role in the dynamics of the knee. Their shape, attachment, and 

material properties contribute substantially to joint alignment and load transmission by 

distributing both tensile and compressive forces. Damage to the menisci can influence 

proprioception, stability, and mobility of the knee231, 239, 240, 270, 271. Risk factors of 

meniscal tears include prolonged or repeated deep knee bending, obesity, and sports17. 

Acute injury, as seen in alpine sports, involves complex dynamics which can damage 

singular or multiple tissue structures of the knee17, 272. Meniscal tears are typically 

thought to be initiated by coupled compression and twisting movements273, 274, which can 

accompany high-energy maneuvers such as cutting, jumping, and landing during sporting 

events275. It is not uncommon for meniscal injuries to occur in conjunction with ACL 

lesions, and the loading imbalance that results in ACL lesions may also generate meniscal 

tears273, 276. The presence of meniscal tears following ACL lesions has been found to 

significantly increase as time after initial injury increases276, 277. Clinical studies of 

meniscal tears following ACL rupture indicate chronic damage to the medial meniscus 

more often than the lateral meniscus243. However, clinical studies of acute damage 

following ACL rupture are not consistent in the literature with some showing more lateral 

damage acutely245, 247, 248, and some showing equality between medial and lateral 

meniscal damage243, 244, 246.   

 

During normal human gait, the posterior third of the medial meniscus inhibits external 

rotation of the tibia, but excessive tension in the posterior horn is observed during 

repetitive impingement of the meniscus against the postero-medial femoral condyle274. 

This increased tension sometimes leads to tearing of the meniscus. Regional variations in 

patterns of meniscal damage have also been previously observed for patients with either 

stable or ACL-deficient knees278-280), including athletic populations275, 281. There have 

been extensive investigations of the role the medial meniscus plays in the ACL-deficient 

knee280, 281. However, isolated meniscal tears may be initiated with knee sprains and 

trauma, with or without the presence of ACL rupture272, 273, 279, 281. Whether damage to the 
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meniscus occurs at the time of trauma or sometime thereafter is not clear, and the 

mechanics of knee joint loading are imperative to understand for treatment and recovery 

after injury.  

 

It is likely that trauma type influences the classification of meniscal tearing278. Bucket 

handle tears have been more frequently observed in skiers, basketball players, and soccer 

players, and have been very rarely observed in gymnasts and tennis players281. Reports of 

frequency and distribution of tears in medial and lateral menisci are difficult to analyze, 

as intrinsic and extrinsic factors likely influence the mechanism of injury, and thus the 

distribution of tears in specific populations. Although some researchers have reported a 

significantly higher incidence in tears of the medial meniscus for young athletes involved 

in sports such as skiing, basketball, and soccer, the frequency of tears between medial 

and lateral meniscal tears is nearly equal for gymnasts and volleyball players281. Whether 

or not athletes with acute ACL injury have predominance for tears of the medial 

meniscus over the lateral meniscus is not well understood244, 281. Therefore, an 

understanding of meniscal injury mechanisms, as well as frequency, location, severity of 

meniscal tears, and involvement/injury of other structures in the knee, is imperative. 

 

The motivation for this study was to explore spatial and temporal distribution of meniscal 

tears in a novel in vivo lapine model. This specific model mimics a high-energy jump-

landing insult on the knee without bone fracture which results in ACL rupture. Previous 

investigations in the OBL have demonstrated that tibial-constrained impaction does not 

lead to meniscal tears282. Therefore, we investigated the trends of meniscal tears in 

rabbits without tibial constraint as well as in rabbits subjected to anterior cruciate 

ligament transection (ACLT). It was hypothesized that damage to the meniscus would 

differ between traumatically torn ACL and ACLT animals. 
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Materials and Methods 

Animal Models 
Skeletally mature Flemish Giant rabbits (5.4±0.3kg) were used in the study. The 

investigation was approved by the Michigan State University Institutional Animal Care 

and Use Committee. All animals were housed in individual cages (152 x 152 x 36 cm3) 

for the duration of the study. Eight rabbits received a blunt force insult to the left 

tibiofemoral (TF) joint using a previously described drop tower282 without tibial 

constraint. An additional three animals underwent unilateral surgical transection of the 

ACL in the left knee (ACLT). Five healthy, uninjured rabbits were used as age-matched 

morphological controls for both 12-week groups.  

 

Animals undergoing blunt force insult to the TF joint were placed under general 

anesthesia (2% Isoflurane and Oxygen). Following a previously described impact 

procedure (24), a 1.75 kg mass was dropped from a height of 75 cm (~ 13 J of potential 

energy) striking the distal femur of the left leg. The sled was arrested electronically after 

one impact. A pre-crushed, deformable impact head (Hexcel, 3.76 MPa crush strength) 

was used to ensure uniform loading over the femur. The impact interface was mounted in 

front of a 4.45 kN load transducer (model AL311CV, Sensotec, Columbus, OH). Prior to 

impact, the left limb was shaved. With the animal lying supine in the fixture, the knee 

was flexed 90º and the foot fixed in a custom designed boot with three Velcro straps. An 

additional Velcro strap was crossed over the femur (Figure 5-1). The tibia was not 

constrained so as to allow for anterior subluxation of the tibia resulting in ACL rupture 

(TEAR group). Five animals were sacrificed immediately following traumatic ACL 

rupture. The remaining three animals received buprenorphine (0.3 ml/kg BW) every 8 

hours for 72 hours for post-trauma pain, and were sacrificed 12 weeks following impact. 

The right limb served as a non-impacted, contra-lateral control. Rupture of the ACL was 

characterized by joint laxity and verified using magnetic resonance imaging the day 

following impaction. 
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Three additional animals underwent ACLT (LMD). Both rear legs of each animal were 

shaved from hock to the hip. The area was prepared using 70% betadine scrub and 70% 

alcohol, alternatively. Once scrubbed the rabbit was moved to a sterile surgery suite 

where, under sterile conditions, the left knee joint was exposed through a medial 

parapatellar arthrotomy. The patella was dislocated laterally exposing the ACL. With the 

knee in full flexion the ACL was transected. The joint capsule was sutured immediately 

after transection using 3/0 PDS. The sub-cutaneous layer and skin was closed in sequence 

using 4/0 PDS and staples, respectively. A sham operation was performed on the right 

limb in a similar fashion. Rabbits were monitored closely by a licensed veterinary 

technician [JA] for signs of pain. Post-surgery pain medication (Buprenorphine 0.3ml/kg 

BW) was administered every 8 hours for 72 hours following the procedure. ACLT 

animals were sacrificed 12 weeks following surgery.  

Morphological Analysis 

The surfaces of the medial and lateral menisci of both limbs for all rabbits were stained 

with India ink to highlight surface fissures, tears, meniscal degeneration, and other 

irregularities. The surfaces were digitally photographed (Polaroid DMC2, Polaroid Corp., 

Waltham, MA) under a dissecting microscope at 12X and 25X (Wild TYP 374590, 

Heerbrugg, Switzerland). Gross morphological assessments were made according to the 

following criteria after the application of India ink: 0=normal; 1=fibrillar surface; 

2=undisplaced tears; 3=displaced tears283. Menisci were also assessed for tear type and 

location using previously established diagnoses284. Meniscal tears were also blindly 

classified by a Board Certified orthopaedic surgeon (DL).  

 

Histological Analysis 

For control (n=3), 12-week ACLT (n=3) and 12-week TEAR (n=2) rabbits, the left and 

right menisci of both limbs were freed of ligamentous attachments and synovium. 

Immediately after removal, menisci were rinsed in PBS and then fixed in 10% formalin. 

Whole menisci bodies were then fixed in O.C.T.-30% sucrose blend (TissueTek, 

Redding, CA, USA) for at least 48 hours. Six (6) μm cryosections were obtained and 
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fixed on gelatin-magnesium sulfate coated slides. Slides were then subsequently stained 

using Fast Green-Safranin O (FG-SafO) staining for cellular morphology. Briefly, FG-

Saf O results in mucins and cytoplasms stained blue-green, nuclei stained black, and 

sulfated glycosaminoglycans (GAG) stained red. Sections were then imaged using an 

Olympus AX70 Microscope and DP70 camera (Olympus Inc., Center Valley, PA, USA).  

Results 

Gross Pathology and Grading of Meniscus 

Left limbs of all TEAR animals were positive for ACL rupture after insult. For all 

animals, the medial and lateral collateral ligaments and posterior cruciate ligament were 

intact in the left knee at time of sacrifice. All ligamentous structures were intact in the 

right uninjured limb. 

 

Gross morphological assessments of the left limb menisci for acute TEAR, 12-week 

TEAR, and 12-week ACLT groups are illustrated in Figure 5-2. Left lateral menisci of all 

acute TEAR animals experienced distinct undisplaced tears (morphological score of 2 for 

all acute TEAR lateral menisci). Only one acute TEAR animal also experienced a medial 

meniscal undisplaced tear (Figure 5-2, Panel A). The four remaining medial menisci of 

acute TEAR animals were not visibly damaged. All left impacted limbs of animals in the 

12-week TEAR group experienced gross morphological scoring of 3 for both medial and 

lateral menisci, indicated by displaced tears and loose tissue flaps, degeneration, and/or 

loss of menisci (Figure 5-2, Panel A). For the 12-week ACLT group, two of the three 

animals experienced gross morphological changes. Medial menisci of two ACLT animals 

experienced meniscal folding and displaced tears, degeneration, and severe bucket-handle 

tearing (morphological score of 3 for both animals). The lateral meniscus of one ACLT 

animal that experienced medial meniscal damage also showed severe degeneration, 

warranting a morphological score of 3 (Figure 5-2, Panel A). The third ACLT animal 

lacked gross morphological changes to either lateral or medial meniscus.  
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For animals in the acute TEAR group, isolated lateral meniscal tears (n=4) were more 

common than isolated medial meniscal tears (n=0). Tear type was diagnosed for two 

acute TEAR animals. For one acute TEAR animal, a longitudinal tear was located in the 

red-red (RR) zone of the posterior region of the lateral meniscus. This rabbit also had a 

parrot beak tear in the red-white (RW) zone of the anterior region of the medial meniscus 

(Figure 5-2, Panel A). Another acute TEAR animal experienced a central region, white-

white (WW) zone longitudinal tear of the lateral meniscus, which extended through the 

RR zone, with no gross medial meniscal damage.  

 

For the left impacted limbs of all three animals in the 12-week TEAR group, tears were 

present in both lateral and medial menisci. For the lateral meniscus, one animal 

experienced a longitudinal tear similar to the longitudinal tears of the acutely injured 

animal. This animal also experienced a radial tear in the central/posterior region through 

the RW/RR zones in the lateral meniscus (Figure 5-2, Panel A). One of the animals 

experienced a WW parrot beak tear in conjunction with a longitudinal tear in the RW 

zone of the lateral meniscus. The third rabbit experienced lateral meniscal degeneration 

in the central and posterior regions. Degeneration of the medial meniscus in the central 

and posterior regions was observed in all three animals (Figure 5-2, Panel A). 

All right limbs of TEAR and ACLT animals, except one, grossly appeared healthy, did 

not experience synovitis, and did not experience meniscal tears. The one animal that did 

have damage to the right limb was from the 12-week TEAR group. This animal 

demonstrated a lateral meniscus radial tear of the WW zone of the central region and 

slight degradation of the anterior region of the medial meniscus.  

Histopathology 

Differences in morphology between control, 12-week TEAR, and ACLT menisci were 

observed at the microscopic level. Representative cross-sections of control, 12-week 

TEAR, and ACLT left-limb menisci are illustrated in Figure 5-3. Positive staining for 

sulfated GAGs appeared to be equally distributed in RW and WW zones for central 

regions of control animals (Figure 5-3A). However, inconsistent coverage of sulfated 
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GAGs was observed in the central regions for lateral TEAR and medial ACLT menisci 

(Figure 5-3E and I). A distinct longitudinal tear is observed in the mid-body region of a 

lateral TEAR meniscus (Figure 5-3E). Fibrillation of the medial ACLT menisci is also 

highlighted in Figure 5-3I (inset), which was observed in two of the three ACLT medial 

menisci. Fibrillation was also observed along the superior surface of lateral menisci for 

both 12-week TEAR animals. No microscopic fibrillation was observed in any control 

animals. Compared to healthy, control menisci, both medial and lateral menisci for 

TEAR animals demonstrated a high proliferation of cells at the synovium-meniscus 

junction (Figure 5-3F), as well as along the periphery of both menisci on deep and 

superior surfaces (Figure 5-3G). Cell proliferation at the synovium-meniscus junction for 

ACLT menisci was predominantly demonstrated in medial menisci (Figure 5-3J), 

however, both medial and lateral menisci of ACLT animals experienced superior and 

deep cellular proliferation (Figure 5-3K). Cell clustering and chondrocyte cloning was 

observed in both medial and lateral menisci for TEAR animals (Figure 5-3H). Cellular 

debris was observed in both ACLT medial and lateral menisci (Figure 5-3L).  

Discussion 

To our knowledge, this was the first in vivo injury model that replicates both acute and 

chronic meniscal damage following ACL rupture. This model imposed a specific and 

known mechanical insult on the tibiofemoral joint at the time of injury. This controlled 

mechanical environment promoted disruption of specific soft tissue structures of the 

knee, namely the menisci and ACL. Because the foot was constrained during impaction, 

it was unlikely that extensive tibial torsion was present at the time of ACL rupture. 

Nonetheless, damage to the meniscus was apparent immediately following this injury. 

This injury model also provided insight into possible mechanisms of meniscal injury. 

Acute meniscal lesions in lateral menisci were observed following dissection 

immediately after impaction with traumatic ACL tear. Extended damage to the menisci, 

particularly of the medial meniscus, progressed during several weeks following ACL 

rupture, likely accelerated by abnormal joint loading and stability. Lateral meniscal tears 

were more frequently observed in certain acute knee injuries where the knee undergoes 
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torsional motion, perhaps because the lateral meniscus had more mobility within the joint 

and thus had greater exposure to unusual compressive and shear stresses243, 281. The 

controlled environment of this model mimicked that observed in knee injuries initiated by 

jump-landing ground impacts in sports such as alpine skiing247, 285, 286. For example, 

Duncan et al assessed acute ACL tears in alpine skiers within three days of injury and 

found that 83% of meniscal tears occurred in the lateral meniscus, with only 17% in the 

medial meniscus247. Similarly, Paletta et al and Inhara et al found an increase in lateral 

meniscal tears compared to medial meniscal tears in skiers285, 286. This is reflected in our 

acute observations of predominantly lateral meniscal tearing. In combined soft tissue 

injuries, lateral meniscal tears have been reported to significantly outnumber medial tears 

in conjunction with medial collateral ligament and ACL tears287. Following acute knee 

twisting injury in 66 patients, the most frequent injury in conjunction with acute ACL 

rupture were found to be lateral meniscal tears (72.7%), which overwhelmingly 

outnumbered the frequency of medial meniscal tears in the same group (10.6%)288. Bone 

bruising of the lateral compartment has also been more frequently observed than in the 

medial compartment in MR images of the knee within four weeks of ACL rupture289, 290, 

with posterior-lateral bone bruising demonstrated in nearly 80% of ACL tears observed 

using MRI291. Nonetheless, the distribution of medial to lateral tears in conjunction with 

ACL rupture throughout the clinical literature is not clear243, likely due to the unknown 

mechanism of injury initiation. The precise mechanism associated with ACL rupture 

likely corresponds to the degree and location of meniscal damage. In our particular 

animal model, the frequency and distribution of acute meniscal tears was consistent and 

repeatable.  

 

The currently investigated model demonstrated the relationship between acute and 

chronic damage to the meniscus. This study may also support previous literature findings 

that meniscal tears are typically accompanied with ACL ruptures and can be initiated in 

contact sports272. Upon rupture, the ACL no longer acts to constrain the anterior motion 

of the tibia, thus provoking higher stresses in the posterior region of the tibia. Similar 

mechanics are thought to exist following ACLT. In this study, animals with surgical 
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transection of the ACL did not demonstrate meniscal damage similar to animals with 

traumatic ACL rupture. While both ACLT animals and TEAR animals showed severe 

synovitis after 12-weeks, the frequency of lateral damage in the ACLT animals was much 

lower than in 12-week TEAR animals. The tear types also differed. Lateral menisci in 12-

weeks TEAR animals appeared to have distinct tears, whereas ACLT animals showed 

fibrillation and degeneration without any tear distinction. Conversely, medial menisci in 

TEAR animals after 12 weeks appeared to be degenerative and fibrillated, whereas 

medial menisci in the ACLT animals with apparent damage were marked by distinct 

meniscal displacement and bucket-handle tearing. The morphogenic differences between 

medial and lateral meniscal damage in these two injury models are noteworthy, as ACLT 

has previously and frequently been used to investigate the pathogenesis of OA10, 13, 153, 158, 

161, 292.  

 

Previous investigations have found noticeable cell clustering and proliferation in the 

medial meniscus with minimal changes to the lateral meniscus eight weeks following 

ACLT10. Our study demonstrated a large amount of cell clustering and proliferation in 

both medial and lateral menisci twelve weeks following ACLT and in our novel 

traumatic injury model (TEAR).  For both ACLT and TEAR animals, cell proliferation 

was increased throughout, and notably at the articulating surfaces and attachments with 

the synovium. Despite this similarity between the ACLT and TEAR animals, differences 

between the two injury models were also observed. In TEAR animals, both lateral and 

medial menisci experienced cellular clustering and cloning after twelve weeks, whereas 

in ACLT animals, a large amount of cell debris was present, perhaps due to necrosis of 

the fibrochondrocytes in the body of both menisci. Variations in the mechanical and 

biochemical environment of the knee may contribute to the microscopic differences 

between these two injury models. Future work investigating the inflammatory response 

following both ACLT and TEAR injuries should be pursued. Others have investigated the 

cellular and molecular response of the meniscus following ACLT. In contrast to the 

current study, Hashimoto et al also observed cell cloning in the medial menisci nine 

weeks following ACLT104. However, it is likely that cell clusters did exist in the current 
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ACLT study, but were phagocytized after twelve weeks, as cellular debris was observed 

in all ACLT menisci. Cell cloning observed in TEAR menisci was noteworthy as it 

indicated a cellular response to injury similar to that of ACLT but perhaps at a different 

rate. The ACLT model may accelerate an inflammatory response caused by surgical 

incision that may lead to altered pathological changes compared to the TEAR model, 

which exhibited a solely impaction-induced cascade of matrix disruption, inflammation, 

and altered cell behavior.   

 

Although the ACLT model induces joint instability, Mansour et al have suggested that 

altered joint kinematics might not be a critical factor in the development of OA293. 

Conversely, others have reported increased degeneration of the meniscus in ACLT 

animals over time10, 158, 283. Meniscal damage in clinical cases may be initially influenced 

by dynamic impaction events that contribute to bone, cartilage, and ligamentous damage. 

Also, it is likely that surgical procedures, such as arthroscopy and ACLT, influence 

synovial swelling, upregulation of inflammation, and pain, which also contribute to 

inhibition of mobility294. The chronic advancement of medial meniscal degradation 

several weeks following ACLT and traumatic ACL tear was apparent in this study. The 

development of the current model could potentially play a large role in investigating the 

implications of meniscal trauma in the progression of chronic joint disease.  

 

Chronic overloading of the medial meniscus was likely responsible for advanced 

degradation of this structure following both ACLT and traumatic ACL rupture. Complex 

medial meniscal damage near the posterior horns has been reported to be more common 

in chronic ACL-deficient knees295. Using a finite-element model, Bendjaballah et al 

demonstrated increased medial loading in the ACL-deficient knee296. In a kinematic 

study, Waite et al observed greater medial tibial displacement and rotation in ACL-

deficient knees throughout the stance phase297. The incidence of medial meniscal tears 

reported in previous literature has been demonstrated to increase with increasing time 

following ACL rupture243, 277, 298. In a ten-year follow-up study on sports-related injuries, 

nearly 24% of injuries to the knee involved the medial meniscus299. In this study, medial 
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meniscal damage was more severe than lateral meniscal damage in the ACLT knee. 

Similarly, the low occurrence of medial meniscal tears at the time of traumatic ACL 

rupture in the current study and the prevalence of medial tears and degradation several 

weeks following injury may be a product of degeneration caused by chronic abnormal 

loading over time. Changes in cell behavior, observed in both injury models in the 

present study, were demonstrated by increased cellular proliferation and clustering, 

especially on peripheral boundaries of the meniscus. Such cellular changes may 

contribute to matrix alterations, perhaps attributing to the degeneration and reduced 

structural integrity following injury.  

 

The locations of acute (lateral meniscus) and chronic (medial meniscus) tears in 

conjunction with traumatic ACL rupture in the present study are also, however, 

somewhat contrary to what has been observed in the literature. In a retrospective, multi-

center study, nearly 37% of ACL ruptures were accompanied by medial meniscal tears, 

16% had only lateral meniscal tears, and over 20% had both medial and lateral tears276. 

However, Cerabona et al investigated the frequency of meniscal tears in patients with 

acute ACL damage and found near equal distribution of tears in the medial and lateral 

meniscus244. In our study, the frequency of tears was comparable between medial and 

lateral menisci for animals sustaining injury for twelve weeks, but not for animals 

immediately following injury. Previous investigations reflect injuries initiated in complex 

biomechanical environments of the knee, and the exact mechanism of ACL ruptures and 

meniscal tears was unknown. Our study represented an isolated compressive injury with 

known biomechanical parameters, thus providing a controlled environment useful for 

investigations of the etiology of meniscal degradation. 
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Figure 5-1. Schematic of traumatic impaction. Impact experiments were performed by 
dropping a gravity-accelerated mass onto the flexed tibial-femoral joint with 
approximately 13 J of potential energy. The rabbit was oriented such that the deformable 
interface struck the distal femur with impact forces oriented axially in the tibia. 
 

 
Figure 5-2. Gross morphological assessment of lateral and medial menisci of uninjured, 
acute TEAR, 12 wk TEAR, and 12 wk ACLT animals. (A) Gross morphological 
appearance of the lateral and medial menisci, from left to right, of each representative 
animal from uninjured, acute TEAR, 12 wk TEAR, and 12 wk ACLT groups. Note the 
longitudinal tears of the acute TEAR menisci, the progressed tearing and degeneration of 
the 12 wk TEAR menisci, and synovial swelling of the 12 wk ACLT menisci. (B) 
Scoring of the gross morphological changes overtime assessed by India ink staining. 
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Figure 5-3. Microscopic structural and cellular findings of control (A–D), 12 wk TEAR 
(E–H), and 12 wk ACLT (I–L) left menisci. Coronal cross-section (A, E, and I) stained 
with FG-SafO illustrate intact control menisci with even distribution of sulfated GAG 
through RW and WW zones, a RW zone longitudinal tear in lateral meniscus of TEAR 
animal, and fibrillation of articulating surface of medial meniscus of ACLT animal [scale 
bar = 2 mm for A, E, and I]; synovial and meniscal junction (B, F, and J) illustrating high 
proliferation of cells for TEAR (F) and ACLT (J). Meniscus and synovium indicated with 
M and S, respectively. Articulating surfaces (C, G, and K) for both TEAR and ACLT 
compared to control [scale bar = 200µmfor B, C, F, G, J, and K]; Fibrochondrocyte 
distribution (D, H, and L) in control menisci appears even, with noticeable cell clustering 
and cloning for TEAR menisci, indicated with thick arrows, and cell debris for ACLT 
menisci, indicated by narrow arrows [scale bar = 100µm for D, H, and L]. 
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Chapter 6 – Regional Changes in Cellular and Tissue 
Morphology of Menisci Following Traumatic Impaction 

and ACL Tear 

Abstract 

Objective: Regional differences in the healthy menisci, in terms of proteoglycan and 

GAG concentration, cellular density, and tissue area have been previously established. 

However, the progression of degeneration on these morphological characteristics has 

only been minimally investigated. This study investigated the role of traumatic impaction 

with anterior cruciate ligament (ACL) rupture and compared these findings with the 

previously established ACL-transection (ACLT) model.  

Methods: The distribution of glycosaminoglycans (GAG), cellular density, and tissue 

area in both medial and lateral menisci across anterior, central, and posterior regions at 

twelve weeks following traumatic impaction injury, as well as ACLT, were measured and 

compared to that of healthy, uninjured controls and sham operated animals. 

Results: A depletion of GAG coverage in medial and lateral menisci of both injury 

groups was observed. Increased tissue area was observed for regions of ACLT menisci, 

and increased cellular density was observed for menisci from traumatically impacted 

knees. Additionally, both models appeared to demonstrate calcium deposition in the 

menisci, but at different magnitudes of severity. 

Conclusion: This study suggests differences between trauma-induced and surgically-

induced instability models of osteoarthritis. Such differences encourage further 

investigations in the clinical relevance of a translational closed-joint animal model for 

investigating traumatically-induced OA. 

Introduction 

The meniscus functions to maintain knee joint health by distributing load and protecting 

the underlying cartilage of the tibial plateau from concentrated stresses of the articulating 

femoral condyles 300.  Damage to the menisci, as observed following traumatic impaction 
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to the knee joint resulting from jump-landing sport accidents and automobile accidents, 

involve high compressive loads and often occurs in conjunction with anterior cruciate 

ligament (ACL) rupture134, 301. Such damage has been clinically reported to lead to an 

accelerated rate of osteoarthritis progression and disability 302, 303. Previous research has 

illustrated the role of high-energy impaction directly applied to cartilage and its 

implications on cell viability 304. Unfortunately, the resiliency of the meniscus following 

traumatic impaction has been rarely investigated 305. It is suggested, however, that the 

health and integrity of the meniscus following traumatic impaction plays a role in 

osteoarthritis (OA) 27, 231, 306, 307. Certain characteristics of the menisci, including its 

cellular density, glycosaminoglycan (GAG) content, collagen distribution, and shape, 

influence the behavior of this load-bearing tissue253.  

 

To date, numerous in vivo animal models have been used to investigate chronic 

advancement of OA of the knee 153, 154, 156, 158, 164, 308, 309. However, the majority of these 

models involve surgical transection of the ACL (ACLT) and/or surgically-induced tears 

or removal of the menisci to mimic clinically observed damage. Although considered the 

“gold standard” of OA models 12, 153-159, 161, 164, 308-310, ACLT models may not reflect 

clinically relevant changes to the knee with respect to the traumatically injured joint and 

may be troublesome when used as a translational animal model. For example, bone 

bruising has been reported in over 80% of acute ligament rupture cases 311, yet current 

animal models that implement ACLT lack this mode of injury 231, 243, 312-315. From a 

clinical standpoint, little empirical research has investigated the chronic implications that 

traumatic impaction and its subsequent damage may have in the development of OA.  

Therefore, the implementation of a new animal model exploring these characteristics may 

prove useful for future traumatically-induced OA research. 

 

Regional differences in the healthy menisci, in terms of proteoglycan and GAG 

concentration, cellular density, and tissue area 36, 78, 316-318 have previously been 

documented and are suggested to be due to the non-uniform loads placed upon the 

menisci236, 318. Additionally, decreased GAG content, recently suggested to occur 
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following traumatic impaction319, suggests changes in soft tissue health and behavior, 

including increased permeability320 and friction levels321.  In a closed joint model, it has 

been shown that isolated impaction to the knee with tibial restraint results in high 

magnitudes of compressive stress on the tibial plateau and an influx of chondrocyte death 

at the superficial layer282. Additionally, we have shown that ACL rupture, a consequence 

of anterior tibial translation following high-energy impaction, results in both acute and 

chronic meniscal morphological damage in the rabbit knee235. Uneven loading on the 

surface of the menisci is exacerbated by injury and altered mechanics. This altered 

loading characteristic may be elucidated by changes in GAG coverage of the meniscal 

body, as suggested in previous studies235, 322, as well as tissue adaptations related to 

cellular density and tissue area. 

 

In the present study, the cellular and matrix resiliency of the meniscus following 

traumatic impaction and ACL rupture was investigated twelve weeks following injury. 

These findings were compared with menisci of knees subjected to ACLT following a 

similar timeline. We investigated the role of traumatic impaction with ACL rupture in the 

induction of the chronic sequelae of meniscal degradation, and such damage was 

hypothesized to be more severe than that of age-matched animals subjected to ACLT. To 

test our hypothesis, the distribution of GAG, cellular density, and tissue area in both 

medial and lateral menisci at twelve weeks following traumatic impaction injury, as well 

as ACLT, was investigated.  

Materials and Methods 

Animal model 
Animal treatment was approved by the Michigan State University Institutional Animal 

Care and Use Committee. A total of eleven Flemish Giant rabbits were used in this study. 

Three rabbits were subjected to a novel tibial impaction device that promoted anterior 

tibial translation. Briefly, animals were anesthetized and their left leg fitted at 90˚ flexion. 

A high-energy force (approximately 13J) was applied externally to the anterior distal 

femur by means of a dropped mass impactor, with impact oriented axially through the 
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tibia without translational constraint (TEAR group). The device used to impact the 

animals’ knees was designed to mimic jump landings, which promote ACL injury, while 

retaining posterior cruciate, medial collateral and lateral collateral ligaments. Performing 

the impaction without anterior translational constraint resulted in ACL tears for all three 

TEAR animals235. Rabbits were given appropriate post-injury care and ACL tears were 

verified by magnetic resonance imaging.  

 

A second group of animals (n=3) were subjected to ACLT as previously described235. 

Briefly, both rear legs of each animal were shaved from hock to the hip. The area was 

prepared using 70% betadine scrub and 70% alcohol, alternatively. Once scrubbed, the 

rabbit was moved to a sterile surgery suite where, under sterile conditions, the left knee 

joint was exposed through a medial parapatellar arthrotomy. The patella was dislocated 

laterally exposing the ACL. With the knee in full flexion, the ACL was transected. The 

joint capsule was sutured immediately after transection using 3/0 PDS. The sub-

cutaneous layer and skin was closed in sequence using 4/0 PDS and staples, respectively. 

A sham operation was performed on the right limb in a similar fashion, but the ACL was 

not transected.  

 

All animals were monitored closely by a licensed veterinary technician for signs of pain. 

Post-surgery pain medication (Buprenorphine 0.3ml/kg BW) was administered every 8 

hours for 72 hours following the procedure. All animals were allowed normal cage 

activity. TEAR and ACLT animals were sacrificed at 12 weeks following injury. Another 

group of animals was maintained as normal, age-matched uninjured controls (n=5). 

Immediately after sacrifice, the knees of animals were carefully dissected and articular 

capsule opened. Lateral (L) and medial (M) menisci from both limbs were removed, 

immediately embedded in formalin and stored at -80°C. For histological staining, menisci 

were cut into anterior, central and posterior (A, C, P) regional sections (Figure 4-1) and 

embedded in Optimal Cutting Temperature embedding compound. Six micron (6µm) 

cryosections were obtained on gelatin-magnesium coated slides and subsequently stained. 
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Slides were stained pair-wise (L and R limb of each animal) for sulfated GAG coverage, 

calcium deposition, tissue area, and cellular density. 

Histomorphometry 
Paired slides were stained using Weigert’s hematoxylin/Safranin O (FGSaf) for sulfated 

GAG coverage and Alizarin red for calcium deposition. Sections were imaged with a 

light microscope and digital camera. Quantifiable GAG coverage, illustrated by the 

amount of GAG-positive (red) staining on each sample, was determined using the R-G-B 

function with ImageJ software. The entire cross-section was calculated using area 

measure and the percentage of red-positive staining was then measured.  

 

Histomorphometric scoring was performed by a blinded Board Certified pathologist. A 

newly established scoring system was developed to classify the activation of the synovial 

layer of the menisci, the morphology of the meniscal cells, and the quality of GAG 

staining (Table 6-1). A system to systematically grade microscopic damage of the 

menisci was developed based on histomorphometry scores of synovial layer, cell 

morphology, and quality of GAG (Table 6.2).  

 

Alizarin red staining was used to identify calcium deposition in meniscal sections44.  

After staining, sections were graded on a scale of 0 to 4 by an independent observer, 

based on the scoring system previously established by Sun et al324 (Table 6.3). 

 
Cells were detected using a propidium iodide staining technique and photographed with 

an Olympus AX70 microscope and DP70 camera. In brief, slides were placed in Coplin 

jars and fixed using 4% paraformaldehyde (PFA). Slides were then washed using PBS 

(pH 7.4), sections were covered by a proteinase K dilution (10 mg/ml) and re-fixed in 4% 

PFA. Slides were then immersed in a propidium iodide solution (1 µg/ml in PBS) to stain 

the cell nuclei. Each section was imaged using fluorescence microscopy. Image analysis 

using CellC (Tampere University of Technology, Tampere, Finland) was performed to 

determine total cell count using an empirically determined cluster size. MetaMorph 
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imaging software (Molecular Imaging, Downington, PA, USA) was used to determine the 

tissue area of each region.  

 
Table 6-1. Scoring system for assessment of histomorphometric changes in menisci, 
classifying synovial layer, cell morphology, and quality of GAG staining of meniscal 
sections. 

Synovial layer 
0 Normal synovial layer 

1 
Slightly reactive synovial layer [focally prominent single 
layer of cells of the synovial lining] 

2 
Moderately reactive synovial layer [2-3 cell-deep layer of 
synovial cells on meniscal surface] 

3 
Over-reactive synovial layer [thick layers of synovial cells 
on meniscal surface] 

Cell morphology 
0 Normal  

1 
Focal clustering of cells and damaged matrix integrity 
[small clusters of cells, sparingly across cross-section] 

2 
Extensive clustering and clearing [several clusters and/or 
large clusters of cells, and/or small regions of 
hypocellularity] 

3 
Degeneration [debris, large regions of hypocellularity 
(>20% of area) or acellularity] 

4 
Sparse cellularity and severe degeneration [few cells, 
large degenerative regions] 

Quality of GAG 
0 Normal 
1 Thinning of GAG [reduced intensity and inconsistencies] 

2 
Redistribution and thinning of GAG [inconsistent GAG 
coverage, migration of GAG to surface, GAG pockets] 

3 
Focal pockets of GAG [devoid of GAG except in distinct, 
irregular, small regions] 
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Table 6-2. Grading and characterization of microscopic meniscal damage. 

Characterization Score Description 

Grade 0 0-2 Normal, healthy menisci 

Grade 1 >2-4 Mild damage 

Grade 2 >4-7 Moderate damage and degenerative changes 

Grade 3 >7 Severe damage and degeneration 

 
Table 6-3. Alizarin red scoring criteria324 for menisci from healthy and injured limbs. 
Score Criteria 
0 no calcium deposition 

1 
limited number of small-sized or medium-sized single calcium deposits at the 
edges of the meniscus 

2 
limited number of clusters of small-sized and medium-sized calcium deposits at 
the edges of the meniscus 

3 

clusters of small calcium deposits inside the meniscus and limited number of 
clusters of small-sized and medium-sized calcium deposits at the edges of the 
meniscus 

4 

clusters of small-sized calcium deposits inside the meniscus and widespread 
clusters of medium-sized and large-sized calcium deposits at the edges of 
meniscus 

 
Cells were detected using a propidium iodide staining technique and photographed with 

an Olympus AX70 microscope and DP70 camera. In brief, slides were placed in Coplin 

jars and fixed using 4% paraformaldehyde (PFA). Slides were then washed using PBS 

(pH 7.4), sections were covered by a proteinase K dilution (10 mg/ml) and re-fixed in 4% 

PFA. Slides were then immersed in a propidium iodide solution (1 µg/ml in PBS) to stain 

the cell nuclei. Each section was imaged using fluorescence microscopy. Image analysis 

using CellC (Tampere University of Technology, Tampere, Finland) was performed to 

determine total cell count using an empirically determined cluster size. MetaMorph 

imaging software (Molecular Imaging, Downington, PA, USA) was used to determine the 

tissue area of each region.  
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Statistics 
Data are presented in the text as mean ± standard error. A one-way ANOVA was used to 

determine statistically significant differences between animal groups within each region 

for each of the metrics investigated: GAG coverage, tissue area, and cell density. 

Additionally, F-tests were performed to determine equal or unequal variance between 

control, TEAR, and ACLT groups based on anatomical location. Post-hoc two-sample t-

tests with respective equal or unequal variance assumptions were used to isolate 

significant differences between groups (p<0.05). A one-way ANOVA was also used to 

determine differences between regions within each group. 

Results 

Average scores of histomorphometric damage from all regions of the meniscal sections 

varied between groups (Table 6-4). The ACLT group demonstrated the greatest amount 

of damage, characterized as moderate with degenerative changes in both medial and 

lateral menisci. The TEAR and ACLT sham groups demonstrated mild damage in both 

menisci (Table 6-4).   

 
 
Table 6-4. Histomorphometric scoring of both medial (M) and lateral (L) meniscal 
sections for Control, ACLT, TEAR and ACLT sham groups. 

Menisci Group Score Grade 

M 

Control 0.8 Normal, healthy menisci 

ACLT 4.5 Moderate damage and degenerative changes 

TEAR 3.4 Mild damage 

ACLT Sham 2.7 Mild damage 

L 

Control 0.1 Normal, healthy menisci 

ACLT 4.1 Moderate damage and degenerative changes 

TEAR 3.0 Mild damage 

ACLT Sham 2.0 Mild damage 
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Morphological damage to the menisci was observed 12 weeks following both TEAR and 

ACLT (Figure 6.1). Similar trends were observed in the depletion of GAG coverage in 

medial and lateral menisci of both injury groups (Figure 6.1). For both ACLT and TEAR 

groups, GAG coverage decreased across all regions. However, this decrease was only 

significant for both groups in the MC and LC regions (Figure 6.1). Additionally, a 

decrease in GAG coverage was observed in the LA and LP regions for the ACLT group 

(Figure 6.1). Hypercellularity, cell clustering, and cell depletion, as well as GAG 

depletion, were also noted for both TEAR and ACLT groups from a qualitative 

standpoint (Figure 6.1). Both ACLT and ACLT sham groups demonstrated matrix 

degeneration across all regions, indicative of “blebbing”, primarily in the outer zone of 

the tissue (Figure 6.1). This characteristic was not observed in any TEAR or control 

samples. Menisci from R limb of TEAR group did not qualitatively differ from menisci 

from control group (data not shown). 

 

Calcification of the menisci was observed in both ACLT and TEAR groups (Figure 6-2; 

Table 6-5). In TEAR menisci, mild calcification was observed, with clusters at the edges 

as well as small depositions in the body of the menisci (Figure 6-2). In the ACLT group, 

the deposition of calcium was more profound than the TEAR group, and clusters 

appeared throughout the meniscal body (Figure 6-2). Large clusters of calcium deposition 

at the edges were observed in the ACLT (Figure 6-2E). The healthy, uninjured menisci 

did not demonstrate calcification (Figure 6-2). Additionally, menisci from unimpacted 

limbs of the TEAR group and from the Sham group did not demonstrate calcification 

(images not shown). 

 

Table 6-5. Grade of alizarin red staining. 

Control ACLT TEAR 
ACLT 
Sham 

Medial 0.3 3.3±0.12 1.9±0.02 1.3±1.90 
Lateral 0 2.9±0.60 2.4±0.30 1.5±2.12 
Average* 0.2 3.1±0.24 2.1±0.10 1.4±1.96 
* average of medial and lateral scores 
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Healthy menisci appeared to have congruous, evenly distributed GAG coverage when 

present (Figure 6.1), along with evenly distributed cells (Figure 6-3i) and a normal 

synovial layer. The ACLT group appeared to be substantially more degenerative than the 

TEAR group from a morphometric standpoint. The ACLT group demonstrated focal 

pockets of GAG (Figure 6.1), degeneration and sparse cellularity (Figure 6-3iv), and an 

over-reactive synovial layer (Figure 6-3v). The TEAR group appeared to have a slight to 

moderately reactive synovial layer (Figure 6-3), redistribution and thinning of GAG 

(Figure 6.1), and focal-to-extensive clustering and cell clearing (Figure 6-3ii and iii).  

 

In the menisci 12 weeks following ACLT, the average cross-sectional area across all 

regions was significantly increased (8.4±1.0mm2) compared to that of the healthy control 

(4.3±0.3mm2), the ACLT sham (4.2±0.3mm2) and TEAR groups (3.9±0.3mm2)(Figure 

6-4). Regional differences in tissue area between groups were further investigated, 

illustrating a significant increase in tissue area for the ACLT group in the MA and LP 

regions compared to the control group (Figure 6-4). Interestingly, the TEAR group 

showed the opposite trend when compared to the control group, in particular with a 

significant decrease in tissue area in the LP region (Figure 6-4). These results indicated 

meniscal swelling following ACLT, which was not observed in the TEAR group.  

 

Menisci of the TEAR and sham groups experienced a significant increase in average cell 

density (559.8±36 cells/mm2) compared to the healthy control group (435.3±23 

cells/mm2)(Figure 6-4), suggesting hypercellularity after 12weeks of injury. The sham 

group only saw a significant increase in cellularity in the medial menisci (Figure 6-4). 

The ACLT group did not differ significantly from the control group in cell density 

(488±39 cells/mm2). Differences in regional cell density were particularly influenced by 

injury in the lateral menisci. A significant increase in cell density was observed in the LA 

region for the TEAR group, whereas a decrease in cell density was found in the LP 

region for the ACLT group (Figure 6-4).  
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Discussion 

This study illustrated two distinct classifications of degeneration and OA progression in 

lapine menisci. The first classification, demonstrated in the TEAR group, includes the 

depletion and thinning of sulfated GAG and changes in cellularity. Specifically, this 

entailed the clustering of fibrochondrocytes, the activation of the synovial layer of the 

meniscus, and the focal depletion of cells. The second classification, demonstrated in the 

ACLT group, includes the degeneration of the meniscal matrix, indicative of cell-like 

blebs, the accumulation of calcium, and the depletion, thinning, and focal accumulation 

of GAG. Additionally, the ACLT group modeled an increased in tissue area, which 

suggests water retention323. This, in combination with a decrease in GAG coverage, has 

been previously identified as a model of advanced degeneration in the ACLT knee323. It 

is possible that these two models may demonstrate differing classifications of OA after 

12wks of damage. It is possible that these separate models replicate two different 

etiologies of OA; specifically, these models may represent primary and secondary OA in 

the ACLT and TEAR models, respectively. In the ACLT model, OA progresses during 

the 12wks post-surgery without the presence of acute compression-induced damage. 

Although the ACLT model leads to more accelerated joint degenerative changes than the 

TEAR model at similar timepoints, the end result is mimetic of clinically observed 

idiopathic OA324. In the TEAR model, the progression of OA is likely influenced by 

acute damage to the menisci as well as subchondral bone microcracks322. Albeit slower, 

the TEAR model may involve alternate mechanisms not observed in the ACLT model, 

such as post-traumatic healing and altered inflammatory signaling, that are observed in 

the post-traumatic knee. The etiology of OA in the ACLT model is assumed to be 

implicitly related to altered biomechanics, whereas the progression of degeneration to the 

knee in the TEAR model is likely more complex. Recently, McGonagle et al has 

suggested anatomical-based classifications for OA as opposed to the traditional 

classifications of primary (idiopathic) and secondary (eg. post-traumatic) derivations325. 

Based on the observed differences between the ACLT and TEAR models in meniscal 
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degeneration, the present study encourages future investigations in meniscogenic 

mechanisms of osteoarthritic development. 

 

Traumatic injury resulting in ACL rupture led to complex changes in the meniscal tissue, 

especially pertaining to GAG coverage, cellular density, and tissue area, and was 

compared to changes in meniscal tissue following ACLT.  This is the first study to 

quantitatively explore changes in GAG coverage of the meniscus following both 

traumatic ACL rupture and ACLT, and this work provides insight into the short-term 

degradative pathway associated with both traumatic impaction and altered loading. It can 

be argued that, in the ACLT model, the loading environment is the only characteristic 

majorly altered in order to replicate arthritic-like changes to the knee joint. Such mimicry 

may not be reflective of changes that result from post-traumatic impaction and anterior 

tibial translation observed in the clinical setting. The ACLT model may be more 

replicative of changes observed in the knee afflicted with advanced primary OA158, 164, 310, 

326, in that it replicates advanced joint degeneration without a multifaceted acute injury. 

The TEAR model imposes a more complex pathway of damage, specifically: ACL 

rupture235, bone microcracks322, and meniscal tears235. These model characteristics may 

relay subsequently different rates and characteristics of OA development than its 

preceding ACLT model. Thus, the TEAR model likely imposes a more clinically relevant 

model for investigating secondary, or traumatically-induced, OA.  

 

The findings of this study suggest that impaction-induced trauma, which resulted in 

pathological loading, can influence the matrix of the menisci differently than pathological 

loading alone. Increased cellular density in regions of the TEAR group may suggest 

cellular proliferation of fibrochondrocytes and/or synoviocytes. Previous work by Hellio 

Le Graverand et al using the ACLT rabbit model have suggested that cell proliferation 

may contribute to the clustering and phenotypic changes of meniscal cells during the 

developmental stages of osteoarthritis 159. However, it is not clear in this study if cell 

proliferation or migration is occurring. Additionally, it is unclear if increased cellular 

density alone is detrimental to the menisci. Some suggest increased proliferation may 
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lead to increased vascularity, healing, and repair 327, 328. Nonetheless, differences in 

cellular density exist between the ACLT and TEAR groups, and this may also underline 

differences in the progression of OA between the two models. 

 

The presence of meniscal calcification of OA patients has just recently brought to light 

the likely role of the meniscus in degenerative knee OA324. Previously, hyaline cartilage 

was thought to be primarily responsible for the production and secretion of calcium into 

the joint. However, Sun et al recently showed that not only is the menisci of OA patients 

calcified, meniscal cells from OA patients also deposit more calcium than healthy cells 

when isolated and cultured in vitro324. As such deposition persists, the secretion and 

release of calcium to the synovial fluid can be further damaging to the joint as a whole329. 

Thus, our findings of increased calcification in the ACLT menisci are important for 

investigating advanced-stage OA. Monitoring the progression of meniscal calcification, 

as well as GAG depletion and changes in cell morphology, may elucidate the exact role 

of the meniscus in idiopathic OA as well as traumatically-induced OA. 

 

Our findings that chronic ACLT induces morphological changes in the menisci are not 

new. Previous literature by Sonoda et al explored the change in tissue area and GAG 

coverage of rabbit menisci, suggesting the role of meniscal swelling and increased cell 

proliferation 9weeks after ACLT in OA progression 323. Additionally, changes in cell 

phenotype and the formation of clusters have been noted within four weeks following 

ACLT 159. However, this is the first study of its kind to explore differences in such 

metrics between a new, closed joint traumatic injury animal model and the “gold 

standard” ACLT model.  It is important to note that cell morphology changes, 

specifically cell clusters and cell islands, observed in the new TEAR model 12 weeks 

following surgery are similar to those seen by Hellio Le Graverand in the ACLT model 

after 4 weeks 159. Cellular and matrix degeneration, present in histological assessment of 

ACLT specimens, may be a more advanced form of the observed cell cluster formations 

present in the TEAR specimens235. This, along with the deposition of calcium in the 

ACLT menisci, suggests that the ACLT model likely progresses more rapidly than the 
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TEAR model. Such an accelerated advancement of OA-like changes in the ACLT 

meniscus may shrink the observational window for investigating treatment efficacy and 

disease progression. Likewise, meniscal swelling and accelerated morphological changes 

may dissuade researchers from understanding the natural progression of traumatically-

induced meniscal damage. The present study underlines the need for further studies, with 

multiple time points, investigating the immediate and long-term biomolecular responses 

of the meniscus to impaction-induced trauma. 

 

The qualitative assessment of cell clusters as well as cell depletion in injured meniscal 

cross sections investigated in this study provide some insight into pathological changes 

for both TEAR and ACLT models. Although the lateral menisci of the TEAR group did 

not appear to be GAG depleted from a quantitative standpoint, the reduced quality and 

lack of congruency in GAG coverage, as well as the deviation in cell morphology 

compared to the control group, were suggested from a qualitative standpoint. Previously, 

it has been well documented that even marginal changes in proteoglycan and GAG 

content influence the load-bearing properties of cartilage and meniscus 80, 330, 331. In 

articular cartilage, decreased GAG coverage, present before other indicators of damage, 

has been suggested as an indicator of degenerative changes to the tissue’s structure and 

stability 332, 333. Measurement of sulfated GAG coverage using Safranin O staining as 

described in the present study provides useful information in the degeneration and 

degradation patterns of the meniscus following injury from both a quantitative and 

qualitative standpoint.  

 

Regional morphological and histological changes to the meniscus have not been 

previously investigated with a non-surgical (closed-joint) instability injury model. 

However, regions of the meniscus may experience changes in local stresses after the 

integrity of both ACL and menisci have been compromised. In fact, it has been suggested 

by their material and molecular makeup that anterior, central, and posterior regions of the 

menisci experience different loading parameters 236. Loss of meniscal integrity leads to 

reduction in the contact area between the femoral condyles and tibial plateau, resulting in 
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50-70% higher stresses on the exposed articular cartilage 334-336. It is noteworthy that the 

medial meniscus saw similar decreases in GAG coverage for the TEAR and ACLT 

groups when compared to the healthy rabbits in this study. Increased strain levels, as seen 

in the remaining meniscus following meniscectomy 95, have been shown to influence the 

amount of GAG released from the meniscus in vitro 174. Chronic decrease in GAG 

coverage for the injured groups in this study may suggest increases in strain levels on the 

remaining menisci; however, such changes can only as of now be speculated as it is 

difficult to measure in vivo strains on the lapine menisci.   

 

The presence of meniscal tears, impaction-induced bone bruising, inflammation, and 

other soft-tissue damage that can be associated with trauma-induced ACL tears may 

influence the maintenance of GAG and cellular density in the knee235, 289, 337, 338. In this 

study, differences between TEAR and ACLT models were apparent, particularly in cell 

density and tissue area. Acute meniscal tearing in TEAR animals was not present in the 

ACLT animals235. Therefore, this study suggests the combined influence of acute and 

chronic degenerative influence of trauma-induced instability. Recently, Meyer el at 

described the “footprint” of bone bruising in the subchondral bone that matched 

tibiofemoral contact pressures during compression-induced ACL rupture 338.  The non-

surgical OA animal model described in this study has been suggested to mimic sporting 

accidents, especially related to downhill skiing 247. Although no gross fracture took place 

following impaction, it is likely that microfracture occurred in the subchondral 

tibiofemoral joints of the TEAR animals. Such microfracture and bone bruising, observed 

with TEAR but not ACLT, likely play a role in the natural development of OA.  

 

In summary, this study used two different lapine models to investigate the progression of 

OA and damage to knee meniscus. While both models contributed to significant changes 

in the microscopic behavior of meniscal tissue, it is important to address the differences 

between these two models. Where the ACLT model demonstrated more accelerated 

degradation and matrix changes in the meniscus, the traumatic model closely replicates 

what is observed in the clinical setting 247. Additionally, the traumatic model will provide 
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insight into the clinically observed cases of joint mechanics alterations, bruising, and 

inflammation immediately following injury to the knee joint, as opposed to the ACLT 

model which specifically replicates altered joint mechanics alone.  Therefore, this study 

provides rationale for future investigations using this novel model for investigations in 

non-surgical, closed-joint meniscal damage as well as OA.  

Recommendations 

The menisci are being further elucidated as playing a major role in the development and 

advancement of OA. By using the TEAR model, future studies can investigate how time-

dependent changes in the menisci evolve following traumatic ACL tear. It is important to 

investigate meniscal morphometric changes at various periods of time to determine 

critical time points for implementing post-injury treatment options. It may also be 

worthwhile to investigate the deposition of calcification of the menisci following ACLT 

and TEAR. Inhibiting the deposition of calcium in the menisci may develop future 

treatment options translatable to the clinic in order to preserve the integrity and 

mechanical function of the healthy menisci. 

Acknowledgements 

This study was supported by a grant from the Centers for Disease Control and 

Prevention, National Center for Injury Prevention and Control (CE000623). Its contents 

are the sole responsibility of the authors and do not necessarily represent the official 

views of the Centers for Disease Control and Prevention. Animal care and injury model 

development was performed at the Orthopaedic Biomechanics Laboratories at Michigan 

State University by Daniel Isaac and Dr. Eric Meyer under the supervision of Dr. Roger 

Haut. 



www.manaraa.com

104 
 

 
 

Figure 6-1. GAG coverage as a percentage of cross-sectional area [mean + SE] (top) and 
micro-morphology (bottom) of control, TEAR, ACLT, and sham ACLT menisci for 
medial (M) and lateral (L) anterior (A), central (C), and posterior (P) regions. Note cell 
clusters (white arrow heads) as well as lack of cells in TEAR meniscal sections, as well 
as cell debris and cell clusters (black arrows) in ACLT and ACLT sham meniscal 
sections. Scale bars indicate 100um. * = significantly less GAG coverage than control 
group for same region. 
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Figure 6-2. Menisci stained with alizarin red of control (A), TEAR (B & D), and ACLT (C & E) groups. There was no calcium 
deposition in control menisci (A). Black arrows indicate calcium depositions. Some regions of TEAR menisci demonstrated calcium 
deposition on the periphery and small clusters on the inside of the menisci (B and D). In the ACLT group, clusters of small calcium 
deposits were present on the inside of the menisci (C) and larger clusters were present on the periphery (E). Scale bar = 500µm. 
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Figure 6-3. Cell morphology of healthy (A), TEAR (B), and ACLT (C) from the anterior 
region of the lateral menisci. Insets illustrate normal distribution of cells in the middle 
zones of healthy tissue (i), cell clustering and hypocellularity (ii and iii), sparse cellularity 
(iv) and over-reactive synovial lining (v). 
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Figure 6-4. Tissue area (mm2) and cell density (cells/mm2) [mean + SE] for control, 
TEAR, ACLT, and sham ACLT medial (M) and lateral (L) anterior (A), central (C), and 
posterior (P) regions. * = significantly lower than control group for same region. ^ = 
significantly lower than other two groups for same region. 
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Chapter 7 – Acute Cell Viability of the Meniscus and 
Cartilage and NO Release of Joint Tissues Following 

Traumatic Impaction 

Abstract 

Objective: Traumatic impaction is known to cause acute cell death and macroscopic 

damage to cartilage and menisci in vitro. The purpose of this study was to investigate the 

viability of the medial and lateral menisci and articular cartilage, as well as the release of 

nitric oxide from these tissues, immediately following traumatic impaction in a closed-

joint animal model. 

Methods: The left limbs of four rabbits were subjected to tibiofemoral impaction 

resulting in ACL rupture and both knees were immediately dissected. Cell viability of 

lateral and medial menisci as well as cartilage was assessed and nitric oxide release to the 

media was assayed. 

Results: A significant decrease in cell viability was observed in the lateral menisci 

following traumatic impaction compared to control limbs. No significant difference in 

viability was measured in medial menisci or articular cartilage. No differences in NO 

release were measured after 12 and 24hrs of incubation. 

Conclusion: This is the first study to investigate acute meniscal viability and NO release 

following traumatic impaction in vivo. The changes in cell viability of the lateral menisci 

may suggest its role in advancement of damage in the traumatic ACL ruptured knee. 

Introduction 

Traumatic impaction is known to cause acute cell death and macroscopic damage to 

cartilage and menisci in vitro151, 152, 282, 305. It is understood that damage to the menisci can 

lead to chronic problems associated with excessive cartilage wear and the eventual onset 

of osteoarthritis (OA)231. Additionally, cartilage fissuring, subchondral bone bruising, and 

chondrocyte death are also believed to lead to the rapid progression of joint 

degeneration311, 339. Such injuries, along with posterolateral meniscal tearing, are often 
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observed after traumatic impaction and anterior cruciate ligament (ACL) rupture235, 322, 

338.  Therefore, understanding how the menisci and cartilage behaves in the acute 

response to impaction may help guide future therapies following traumatic knee injury in 

order to prevent the development of OA.  

 

The purpose of this study was to investigate the viability of the medial and lateral menisci 

and articular cartilage, as well as investigate the release of nitric oxide (NO) from these 

tissues, following traumatic impaction in a closed-joint animal model. It was 

hypothesized that the lateral menisci would demonstrate a significant increase in cell 

death following traumatic impaction based on its high risk of tearing following traumatic 

impaction235. Additionally, it was hypothesized that the impacted limbs would 

demonstrate a greater release of NO than the control limbs. 

Materials and Methods 

Traumatic Impaction 
Four skeletally mature Flemish Giant rabbits (5.9 ± 0.9kg) were used in the study. The 

investigation was approved by the Michigan Technological University Institutional 

Animal Care and Use Committee. All animals were housed in individual cages 

(61x122x46 cm3) prior to the study. Animals were tranquilized with 1mg/kg 

acepromazine and anesthetized using 5% isoflorane and 1% oxygen. Animals were 

euthanized by either overdose of isoflorane or intracardial injection of potassium 

chloride. Immediately following death, animals received a blunt force insult to the left 

tibiofemoral (TF) joint using a previously described drop tower235. The drop tower sled 

was arrested electronically after one impact. A pre-crushed, deformable impact head 

(Hexcel, 3.76MPa crush strength) was used to ensure uniform loading over the femur. 

The impact interface was mounted in front of a 4.45kN (1000lb) load transducer (ICP® 

force sensor, model 208C04, PCB Electronics, Depew, New York, USA) (Figure 7-1). In 

the current study, the impact mass was 1.75kg and was dropped from 0.88m. The impact 

force to induce ACL rupture was 737.5±11.9N (mean ± SE). The animal was laid supine 

with the knee flexed at 90 deg. The foot was fixed in a boot with two Velcro straps. Two 
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additional Velcro straps crossed over the femur. The left leg was positioned such that the 

dropped mass struck the distal femur, which resulted in a “kissing” impaction of the 

femur onto the posterior tibial plateau (Figure 7-1). This impaction encouraged anterior 

tibial subluxation and ACL tearing. After impaction, an anterior drawer test was used to 

diagnose ACL tears. The right leg served as an unimpacted control. 

 
Following impaction, both impacted and control legs were disarticulated and dissected 

under sterile conditions. Surrounding musculature and ligamentous attachments were 

removed except the ACL, posterior cruciate ligament (PCL) and menisci.  Both ACL and 

PCL ligaments were inspected for tears, and then fully transected at the proximal ends if 

necessary. The knee was completely disarticulated to investigate the presence and 

location of meniscal tears. The posterolateral meniscal attachments were detached from 

the femur using a scalpel. The tibial plateau and femoral condyles were then harvested 

approximately 0.6-0.8cm from the proximal and distal ends, respectively, using a high-

speed motorized rotary tool (Dremel , Racine, WI, USA) while continuously rinsing with 

37˚C sterile PBS to avoid the influence of heat on the viability of articular 

cartilage/meniscal cells. The menisci remained attached to the tibial plateau. Once 

removed, the ends of the tibia and femur were rinsed twice in PBS and twice in growth 

media (44% Hams/F12, 10% fetal bovine serum, and 2% penicillin/streptomycin; 37˚C). 

Following rinsing, ends were submerged into individual wells containing 10mL growth 

media and incubated at 37˚C and 5% CO2. Media was removed at 12hours post-harvest 

(t12), stored at -80˚C, and replaced with fresh media. Media was again removed at 

24hours post-harvest and stored at -80˚C (t24). 

Cell viability 
At 24hours post-harvest, the menisci were removed from the tibial plateau and a custom 

drop slicer was used to remove 2-3 parallel 150µm thick coronal sections from the central 

regions of the lateral (LM) and medial (MM) menisci. This period of incubation has been 

shown to maximize cell death after traumatic insult in vitro 340. If a meniscal tear was 

present, slices were obtained to include the tear while remaining as centrally located as 

possible. The cut surfaces of the tibial plateau (TPC) and femoral condyles (FC) were 
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adhered to Plexiglass squares using cyanoacrylate and 2-3 150µm thick coronal sections 

of the cartilage and bone from regions at or slightly posterior of the PCL insertion (TPC) 

and of the posterior condyle (FC) were obtained using a high-speed isomet saw (Isomet 

1000 Precision saw, Buehler, Lake Bluff, IL), with constant hydration of PBS. Sections 

of menisci and cartilage (TPC and FC) were immediately incubated in 2mM ethidium 

homodimer-1 and 4mM Calcein AM in PBS and incubated for 30-45minutes in the dark 

at room temperature (. Images were captured for both live (green fluorescence) and dead 

(red fluorescence) cells using a fluorescence microscope (Olympus AX70 microscope 

and DP70 camera). CellC was used to count live and dead cells from individual 

images341, where the percentage of cell viability was equal to the amount of live cells 

divided by the total sum of dead and live cells. Data from the 2-3 slices on each 

anatomical location were averaged, and the data from each animal were compared for 

statistical analyses (n=4).  

Nitric oxide release 
The release of NO into the tibial and femoral culture media at t12 and t24 was quantified 

using a commercially available assaying kit (Nitrate/Nitrite Colorimetric Assay Kit, 

Cayman Chemical Company, Ann Arbor, MI)32. Quantification of total NO production 

included the sum concentration of both nitrite and nitrate. The assay measured the total 

NO concentration in two steps. First, nitrate was converted to nitrite utilizing nitrate 

reductase. Second, nitrite was converted to a deep purple azo compound through Griess 

reaction. Absorbance of colored azo was measured and then converted to total NO 

concentration (mM) using a standard curve.  The final concentration was normalized to 

wet weight (g) of the tissue (n=3 for each time point). Since proteins are known to 

interfere with Griess reaction, conditioned media were filtered using a 10kD cut-off filter 

before assay (Millipore Microcon YM-10, Bedford, MA, USA).  

Statistics 
Statistical analysis was performed to determine differences between control and impacted 

limbs in cell viability and NO release. A two-way ANOVA with repeated measures was 

implemented to determine statistical differences in cell viability between anatomical 
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location (LM/MM/cartilage) and limb (control/impacted). Post-hoc pair-wise 

comparisons were performed for detection of differences in MM, LM, and cartilage cell 

viability within each anatomical location. Pair-wise analyses were also performed for 

superficial, middle, and deep layers within and between control and impacted limbs. FC 

sections were not included in statistical analysis due to the limited number of paired 

slices from control and impacted limbs (n=1). Pair-wise comparisons were also 

performed to determine differences in release profiles of NO to the media at t12 and t24 of 

tibial and femoral tissue from control and impacted limbs. P values < 0.05 were used for 

all analyses. 

Results 

The morphological assessment of all animals is listed in Table 7-1. Three of the four 

rabbits experienced ACL tear, although all four were diagnosed with “clicking” prior to 

joint dissection. Three of the four rabbits experienced lateral meniscal tears, and two had 

medial tears (Table 7-1). One rabbit experienced both LM and MM tears along with ACL 

tear (Figure 7-2B). If a meniscal tear was present, it was typically located in the posterior 

region (Figure 7-2B). Qualitative assessment of synovial tissue indicated that the 

parameniscal regions of the impacted tissue following a 24hr period of incubation were 

more reactive compared to control tissue (Figure 7-2C & D). 

 
 
Table 7-1. Morphological assessment including meniscal and ACL tears of animals. 
 

 LM tear MM tear ACL tear 
A1 
A2 -- -- 
A3 -- Partial 
A4 -- Partial 

 
From a qualitative standpoint, uninjured controls demonstrated consistent and uniform 

cell viability across menisci and cartilage sections, with dead cells evenly distributed 

across the sections (Figure 7-3). In tissue from impacted knees, a significant decrease in 

cell viability was observed in LM compared to that of controls (Figure 7-4). In menisci 
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from impacted limbs, increased cell death was noticeable along the tear edges, where cell 

death was most prominent (Figure 7-3).  Changes in cell viability of the MM were not 

statistically different between control and impacted limbs (Figure 7-4).   

 

In this study, cell viability of the TPC from control and impacted limbs did not differ 

(Figure 7-4). Additionally, there were no differences in cell viability between control and 

impacted limbs with respect to superficial, middle, or deep cartilage layers (Figure 7-5). 

Although cell viability of cartilage did not differ between impacted and control limbs, 

qualitative differences in cell viability were observed between zones (Figure 7-6). In 

particular, the superficial zone appeared to have “hot spots” where more cell death was 

observed for the impacted limbs compared to the control (Figure 7-6B & D). 

Additionally, one animal experienced a deep zone cartilage bruise that demonstrated 

complete cell death in the bruise region following impaction (Figure 7-6F).  

 

The release of NO from femoral and tibial tissue blocks was not significantly influenced 

by traumatic impaction at either t12 or t24 time points (Figure 7-7). However, the femoral 

condyles from impacted limbs tended to show a greater release at t12 and t24 than control 

limbs (Figure 7-7). 

Discussion 

This is the first study to explore changes in cell viability of menisci following traumatic 

damage in vivo. In this study, cell death of the menisci was localized near and at the 

surfaces of tears, particularly in the inner zone. Cell death was also most apparent in the 

lateral menisci. In cartilage, cell death was localized predominantly at bruise sites and at 

“hot spots” in the superficial zones of impacted limbs. Several others have explored cell 

viability of cartilage following impaction injuries151, 152, 282, 305 and have shown similar 

findings of cell death along fissures. However, only marginal work has been done to 

explore how trauma influences cell viability of the menisci305. Nonetheless, the 

accumulation of cell death at tear sites of menisci in the present study was not 

unexpected, based on previous cartilage studies151, 152. In the present study, injury was 
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induced by anterior tibial subluxation, which led to longitudinal tears in the posterior 

aspect of the lateral and medial menisci. Recent work by Kisiday et al impacted meniscal 

explants in vitro and observed a substantial amount of cell death post-impaction without 

macroscopic damage to the articulating surface of the menisci305. Additionally, Isaac et al 

measured cell viability of cartilage using a similar in vivo model that constrained the tibia 

and prevented anterior tibial subluxation282. In their study, cell viability of the cartilage 

significantly decreased in medial and lateral compartments following traumatic 

impaction, and suggested differences in viability between medial and lateral facets282. 

However, their study did not investigate the role of impaction on the viability of the 

meniscal cells. In the present study, the lack of dead cells in the articular cartilage was 

surprising. Although we expected to see a decrease in cell viability in cartilage and 

menisci, significant decreases were only observed for the lateral menisci. It is likely that, 

because the present model encourages anterior tibial subluxation, the menisci are more 

susceptible to damage than the cartilage which they protect.  

 

In the present model, the dissipation of energy following impaction may be focused 

through tears in the menisci and ACL, leaving the cartilage relatively unscathed. As the 

ACL ruptures and the tibia sublux anteriorly, the menisci also tear; such tearing of both 

ACL and menisci may encourage a combined “pinched” shearing of the meniscal surface 

and compression of the femur on the posterior edge of the tibial plateau. Because the 

menisci and ACL tear, and deformation of these soft tissues is observed, the strain energy 

may be stored in these tissues rather than being attenuated through to the underlying 

cartilage. Conversely, in the constrained model, load is transferred axially through the 

menisci, and the meniscal integrity is conserved; therefore, the strain energy may be 

transferred to the underlying cartilage282. Development of computer models may 

elucidate the transfer of energy suggested with these two injury modes. From a 

qualitative standpoint, traumatic impaction and ACL rupture does lead to some cartilage 

cell death, although this was not found to be significant in the present study. It may also 

be that the lack of statistical significance of cartilage cell death in the present study may 

be a result of acquiring combined medial and lateral slices of the tibial plateau as opposed 
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to isolated facets, or that the harvesting of 2-3 articular slices in the present study may 

have missed the cell death of the articular cartilage. Future studies investigating traumatic 

impaction and anterior tibial subluxation should isolate articular cartilage from both 

medial and lateral facets as well as harvest more slices for live/dead staining in order to 

map cell viability across the entire plateau. The current study may have missed 

visualization of the impaction site and thus missed cell death of the articular cartilage. 

 

Other in vitro impaction studies have used different constraints to investigate how cells of 

cartilage and menisci respond to impaction. For example, Lewis et al152 mimicked stress 

magnitudes applied to cartilage explants in vitro to those applied by Torzilli et al342, but 

noted different levels of chondrocyte viability. This was most likely the result of different 

experimental constraints, as Torzilli et al342 impacted isolated cartilage explants whereas 

Lewis et al152 impacted intact cartilage-subchondral bone explants. The viability of 

menisci, albeit only minimally investigated, has also only been explored in explant 

form99, 138, 305.  Additionally, only one of these studies has explored how impaction-

induced trauma influences the viability of meniscal cells305. Although studying impaction 

in vitro has allowed researchers to isolate the tissue of interest from external factors, such 

as synoviocytes, macrophages, and vasculature, it may also change the mechanical 

behavior of the tissue 151, 152, 342. In a modification to the present in vivo model, it has been 

shown that impaction without anterior tibial subluxation has led to significant decreases 

in chondrocyte viability of both lateral and medial tibial plateaus282. Additionally, 

constraining the tibia to maintain ACL integrity has led to incongruous pressure mapping 

across the tibial plateau, with the largest pressure measurements located at the exposed 

regions of articular cartilage rather than those areas protected by the menisci282.  In the 

present study, we encouraged anterior tibial subluxation by not constraining the tibia 

during femoral impaction and measured cell viability of both cartilage and menisci. 

Along with ACL rupture, the lack of anterior tibial constraint also encouraged meniscal 

tears that were not observed in the constrained model (unpublished data). Thus, the 

present study and previous work by Isaac et al282 has demonstrated two models with 
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differing boundary conditions to investigate in vivo traumatic loading of cartilage and 

menisci. 

 

Although release of NO into the culture media was not statistically significant, trends that 

suggest a greater release of NO from femoral tissue is encouraged. We would expect to 

see an increase in both tibial and femoral NO release at both 12 and 24 hours. It is 

possible that the NO release from the tibial tissue was marked by residual bone marrow 

and vasculature the cultured tibial ends. In the present study, we hoped to determine 

whole-joint changes in NO release following impaction. However, the release of NO 

from cartilage and menisci may have been much less than the normal activity of NO in 

bone marrow and vasculature. Future culturing methods should isolate cartilage and 

menisci (eg. in explant form) in order to determine the NO release of each respective 

tissue following traumatic impaction. 

 

This study illustrates the localized cell death following impaction-induced ligamentous 

rupture found with meniscal and cartilage defects. An understanding of the cellular 

response of meniscal tissue to traumatic impaction may lead to alterations in acute 

treatments and delay progression of meniscal degradation and development of OA.  

 

Recommendations 

Future work should investigate potential mediators of cell viability during the acute phase 

of injury and their role in short term and chronic meniscal and cartilage health. For 

example, cell surfactants such as poloxamer-188 may maintain the integrity of the cell 

membrane and prevent cell death following traumatic impaction. Monitoring cell necrosis 

and cell apoptosis in the acute traumatically injured knee may also elucidate mechanisms 

of cell clearing, cell clustering, and matrix degeneration observed in the injured menisci 

of post-traumatic arthritic knees. 
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Figure 7-1. Impact experiments were performed by dropping a gravity-accelerated mass 
onto the flexed tibial-femoral joint. The rabbit knee was positioned such that the 
deformable head struck the distal femur in order to induce anterior tibial subluxation and 
ACL rupture. 
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Figure 7-2. Gross morphology of menisci immediately after dissection in control, 
unimpacted right knee (A) and impacted left knee resulting in ACL tear (B). Reactivity of 
synovium is marginal after 24hrs of incubation in tissue harvested from control limbs (C) 
compared to the swelling of the perimeniscal region of impacted knees at the same post-
incubation time point (D). Arrows highlight tears in the posterior region of both menisci 
(B). Synovial reactivity highlighted by area of dashed lines in C & D. L = lateral, M = 
medial. 
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Figure 7-3. Cell viability of lateral and medial menisci from control and impacted knees.  
Note the increased cell death (red cells) at tear edge of the impacted lateral menisci.  
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Figure 7-4. Cell viability of cartilage, lateral menisci, and medial menisci normalized to 
control limb. * = significantly different between groups 
 
  

 
Figure 7-5. Zonal comparison of cell viability of articular cartilage for control and 
impacted limbs. * = significantly different between zone layers. 
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Figure 7-6. Cell viability of control (left column) and impacted (right column) 
tibiofemoral cartilage. Note the localization of cell death (red cells) in the impacted 
group, particularly in the superficial (D) and deep bruised (F) regions. Arrows illustrate 
regions of high cell death. SB = subchondral bone. 
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Figure 7-7. NO release of meniscotibial (T) and femoral (F) tissue from control and 
impacted limbs measured in the culture media after 12 and 24 hours of incubation. NO 
concentration (µM) was normalized to wet weight of tissue (g). 
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Chapter 8 – Significance of Research 

Understanding the Etiology of Osteoarthritis 

The influence of osteoarthritis (OA) on the economy, disability, health care, and well-

being is astounding. Nearly 21 million Americans are affected by this debilitating 

disease. There are several potential culprits for OA343, including increased age, obesity, 

joint malalignment, and injury. Of these risk factors, the derivations of degeneration may 

differ. For example, the knee of an obese patient may develop OA of unknown and/or 

multifaceted etiology. It may be that chronic overloading of the weight-bearing joints 

lead to degeneration, or perhaps that joint malalignment accelerates the disease344. 

Nonetheless, pinpointing the initiation of OA in many cases is often impossible. 

However, in knee of an athlete subjected to anterior cruciate ligament (ACL) rupture, 

damage and altered loading are suspected causes of accelerated OA advancement.  

Clinically, the progression of OA in the post-traumatic knee is rapid345 and imposes on 

what would otherwise be a healthy knee. However, the mechanisms of degeneration are 

not clear and must be further investigated. 

 

The viability of cells in the post-traumatized soft tissue has been explored over the last 

decade151, 152, 282, 305, 342. However, the work presented in this dissertation is the first of its 

kind to investigate acute changes to the menisci in the traumatically injured knee. 

Although acute damage of the menisci in vivo demonstrates increased cell death at tear 

sites following traumatic impaction, the implications of cell death are not clear. 

Additionally, the mechanisms of cell death following damage to articular cartilage and 

menisci are not well understood346, 347. Although apoptotic death may be induced by 

traumatic impaction, it is also likely that necrotic cell death is also playing a role in the 

viability outcomes of torn menisci. Cell necrosis leads to cell swelling, organelle spillage 

to the extracellular matrix, and the subsequent induction of inflammatory pathways348. 

However, apoptosis is typically more metabolically quiet, and does not lead to any 

substantial inflammatory response348.  It is likely that the majority of dead cells observed 
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in the torn menisci are necrotic based on their clustering and density. Along similar lines, 

the effect of cell clearing, macrophage activation, and the ability of injured tissue to heal 

following injury has only been marginally investigated99, 137, 349-351. Future studies 

designed to follow the progression of cell death, clearing, and repair in soft tissues of the 

traumatized joint are needed. 

 

Knee injury in animal models likely lead to an increase in inflammatory mediators and 

joint effusion13, 28, 33, 35, 104, 315. In clinical studies, inflammatory mediators were found in 

synovial fluids of patients with OA352, 353. Inflammatory mediators have been 

demonstrated to encourage the recruitment of cytokines and promote imbalance in 

anabolic/catabolic transcriptional homeostasis. These molecules have been inhibited in 

clinical trials by the application of non-steroidal anti-inflammatory drugs (NSAID)353. 

NSAIDS typically only inhibit specific pathways, such as the COX-2 or PGE-2 

pathways353. Also, adverse effects with NSAID use are sometimes observed, including 

hypertension, gastrointestinal hemorrhage and anemia, and many clinicians are resorting 

to COX-2 inhibitors354. Unfortunately, selective COX-2 inhibitors may increase the risk 

of myocardial infarction354. These drugs are typically used after OA has symptomatically 

developed. However, inhibiting inflammation during the acute progression of post-

traumatic OA has not yet been thoroughly explored.  

 

It is advantageous to investigate the mechanisms that initiate OA so as to prevent its 

progression during early-stage development. Severe advancement of OA is typically 

remedied with total knee arthroplasty, of which components may only last fifteen or so 

years. Advances in tissue engineering remedies are being explored, and surgical 

techniques are continuing to improve. Currently, it is known that the progression of OA is 

dependent in part on the mechanical environment of the knee. Understanding how 

meniscal cells respond to different mechanical loads may help develop mechanisms for 

retaining mechanical environments post-injury. This may lead to developments in 

preventative medicine and treatments, including: use of supplements, such as 

methylsulfonylmethane (MSM) and glucosamine chondroitin; pharmaceuticals driven to 
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preserve the membranes of mechanically compressed cells, such as poloxamer-188; and 

implementation of specific cyclic exercises, such as continuous passive motion therapy, 

to encourage fibrochondrocyte health and stimulate healthy cell activity. Additionally, 

encouraging awareness and early treatment modalities of joint injuries is crucial for the 

health of the post-traumatic knee. 

Development of More Reliable Animal Models for Osteoarthritis 

It is common for researchers to use animal models when investigating diseases and 

injuries. As such, it seems imperative to accelerate disease in animal models, especially if 

the disease has a slow progression, in order to observe the effects in a suitable time 

frame. However, some manipulations to accelerate diseases are not realistic for all types 

of OA development. For example, as the work in this dissertation elucidates, the 

commonly used ACLT model of OA likely does not replicate the progression of damage 

observed in the post traumatic knee. Additionally, parapatellar surgery and arthroscopy 

may also stimulate an immune response in the knee joint space, which may contribute to 

decreased healing time or impaired joint health. Some researchers have accounted for this 

in animal studies by using sham operated control animals in ACL-transection (ACLT) 

studies, in which they open the joint capsule of all animals but do not always surgically 

transect the ligament. However, it is possible that the sham operation itself triggers 

synovial cell activation which may encourage damage to other soft tissues within the 

knee.  

 

The implementation of an animal model that encourages trauma-initiated, closed-joint 

OA is in need of being further developed. Future studies investigating the in vivo 

characteristics of the healthy and post-traumatic knee could provide useful information 

in understanding the mechanobiology of the menisci. For example, the presence of 

meniscal tears may lead to different stress distributions on the articular cartilage and 

remaining menisci. Additionally, the magnitude of strain in the remaining menisci 

following traumatic tear may also change compared to the intact menisci. The 

development of minimally invasive pressure and strain transducers may help to 
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illustrate localized mechanical parameters involved with in vivo meniscal tears, and 

advanced imaging technologies, such as implementation of quantum dot and 

fluoroscopy, may help visualize changes in meniscal strains during impaction.  

 
In summary, this work provides a springboard for future studies investigating biological 

as well as mechanical parameters following changes in meniscal integrity. In particular, 

the use of both in vitro and in vivo models has developed a better understanding of the 

biochemical and morphological changes associated with the menisci following acute 

damage and chronic degeneration. Lastly, this research has aided in understanding of 

traumatically-induced damage to the knee, particularly the menisci, and encourages 

future studies to develop rehabilitatory mechanisms which may lead to the delay or 

prevention of post-traumatic knee OA. 
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 Table A.1. Quantitative PCR data for porcine meniscal explants treated with and without 
IL-1RA subjected to 2hrs of dynamic compression exercises. In: Research folder, IL1RA 
Research subfolder, “IL1-RA Compiled Results_Updatedv2.xlsx” 

 
 

IL-1RA Treated Control 
0% 10% 20% 0% 10% 20% 

ADAMTS4 
Sup 

Average 0.47 0.15 0.34 1.95 0.81 1.96 
StError 0.19 0.08 0.22 0.54 0.21 0.50 

Deep 
Average 0.61 0.40 0.53 1.86 0.74 2.55 
StError 0.26 0.18 0.09 1.20 0.41 1.16 

ADAMTS5 
Sup 

Average 3.16 ND 24.45 2.77 25.09 27.23 
StError 0.84 ND 9.24 0.68 14.67 13.31 

Deep 
Average 1.16 2.07 3.20 1.70 10.81 1.63 
StError 0.53 0.72 1.11 0.54 3.61 0.21 

IL-1α 
Sup 

Average 3.65 3.73 0.50 3.07 6.86 6.16 
StError 1.52 2.47 0.22 0.35 2.31 1.09 

Deep 
Average 1.10 0.73 0.94 4.28 5.73 6.11 
StError 0.33 0.51 0.69 0.73 2.01 0.49 

Aggrecan Sup 
Average 10.64 17.37 28.65 11.41 18.00 22.75 
StError 9.17 8.99 13.67 1.97 4.34 8.08 

COX-2 
Sup 

Average 8.83 7.48 1.30 1.54 4.23 2.28 
StError 4.79 5.26 0.37 0.37 1.67 0.42 

Deep 
Average 2.93 1.32 2.03 1.43 4.00 2.58 
StError 2.06 0.33 1.34 0.24 1.17 0.69 

iNOS 
Sup 

Average 0.32 0.48 0.50 0.53 0.73 1.29 
StError 0.09 0.11 0.11 0.11 0.14 0.37 

Deep 
Average 0.30 0.48 0.27 0.27 0.43 0.66 
StError 0.10 0.21 0.01 0.06 0.10 0.18 
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Table A.2. Control lapine meniscal histomorphometric measurements. n=5 for each group. In: Research folder, Rabbit Histo 
subfolder, “ACLT, TEAR, and control data_v1.xlsx” 

MA MC MP LA LC LP 
Tissue Area average 4.74 2.76 3.52 5.57 3.93 5.16 
mm2 stderror 0.47 0.43 0.31 0.62 0.38 0.40 
Cell Density average 425.45 394.28 431.18 462.76 394.00 569.62 
Cells/mm2 stderror 29.55 48.34 30.12 22.05 25.11 25.75 
GAG Coverage average 24.44 5.41 4.35 13.56 14.19 12.30 
% area coverage stderror 8.65 1.70 2.29 3.48 4.19 3.75 

 
Table A.3. Tissue area of histological sections of control, impacted (TEAR), ACLT, and ACLT sham (sham) medial (M) and lateral 
(L) menisci in anterior (A), central (C), and posterior (P) regions. In: Research folder, Rabbit Histo subfolder, “ACLT, TEAR, and 
control data_v1.xlsx” 

 Control TEAR ACLT Sham 
MA average 4.74 4.33 11.09 4.60 
  stderror 0.47 1.45 2.39 0.78 
MC average 2.76 3.13 6.55 2.76 
  stderror 0.43 1.39 2.92 0.55 
MP average 3.52 4.25 6.58 3.74 
  stderror 0.31 0.27 3.13 0.50 
LA average 5.57 4.12 8.45 5.22 
  stderror 0.62 0.72 1.39 0.52 
LC average 3.93 4.70 7.06 4.89 
  stderror 0.38 0.44 3.26 0.62 
LP average 5.16 3.03 11.83 4.21 
  stderror 0.40 0.09 0.18 0.45 
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Table A.4. Cell density of histological sections of control, impacted (TEAR), ACLT, and 
ACLT sham (sham) medial (M) and lateral (L) menisci in anterior (A), central (C), and 
posterior (P) regions. In: Research folder, Rabbit Histo subfolder, “ACLT, TEAR, and 
control data_v1.xlsx” 

 Control TEAR ACLT Sham 
MA average 425.45 616.25 426.57 533.55 
  stderror 29.55 27.50 93.65 34.27 
MC average 394.28 364.14 479.39 604.27 
  stderror 48.34 118.16 87.07 25.15 
MP average 431.18 622.23 542.90 670.08 
  stderror 30.12 21.05 120.52 51.48 
LA average 462.76 669.33 472.07 551.62 
  stderror 22.05 84.92 18.30 72.19 
LC average 394.00 533.18 592.36 547.35 
  stderror 25.11 32.79 153.52 19.08 
LP average 569.62 553.56 383.24 571.66 
  stderror 25.75 71.83 19.27 23.73 

 
Table A.5. Percentage of area covered by sulfated GAG (positive SafO stain) for 
histological sections of control, ACLT sham (SHAM), impacted (TEAR), and ACLT 
medial (M) and lateral (L) menisci in anterior (A), central (C), and posterior (P) regions. 
In: Research folder, Rabbit Histo subfolder, “ACLT, TEAR, and control data_v1.xlsx” 
 
 

 Control TEAR ACLT Sham 
MA average 16.97 5.13 6.23 6.50 
  stderror 4.84 4.97 2.89 2.32 
MC average 6.25 0.54 1.07 5.55 
  stderror 2.11 0.28 0.36 2.41 
MP average 4.09 0.70 1.94 2.30 
  stderror 1.96 0.48 1.61 0.76 
LA average 12.77 8.63 1.47 4.47 
  stderror 4.54 5.29 0.65 1.56 
LC average 15.86 8.71 0.42 2.04 
  stderror 5.22 4.23 0.07 0.63 
LP average 13.32 9.94 0.43 5.76 
  stderror 5.13 5.46 0.34 3.09 



www.manaraa.com

166 
 

Table A-6. Impaction inventory of rabbits housed at Michigan Tech. 

  
Rabbit ID Date 

Weight 
(kg) Sex Right limb

Impact 
force Height Notes 

Left Limb Impact 
force (lbf) Height Notes 

1 
990C64 3/24/2010 5.5 Female impacted     

Constrained, no 
macroscopic 

damage 
Impacted 

    
Not constrained, 
tibial fracture 

2 

HG128H 3/24/2010 6.5 Female Impacted 1       Impacted 1       

  

killed with 
intracardial 
injection of 
KCl     Impacted 2     

not constrained, 
tibial fracture on 

medial side 
beneath medial 
tibial condyle. 

Boot issue? 
[crushing/pinching 

on impact] 

Impacted 2

      
                Impacted 3       
                Impacted 4 169.6     

                

Impacted 5

182.2   

ACL rupture, 
lateral meni tear 
(posterior) 

3 

BR152  3/27/2010 5.3 Female Impacted 1 175.5 29"   
Impacted 

  35.75" 
Bone fracture; 
too high of load!

        Impacted 2
error in 
DAQ 35"           

        Impacted 3 192 34.25" 

ACL rupture, 
longitudinal 
lateral meniscal 
tear 
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4 

900C60  3/28/2010 5.05 Male Control     healthy Impacted 1 144.6 34.75"   
                Impacted 2 139.3 34.5"   

                

Impacted 3

163.4 34.75" 

ACL tear, medial 
and lateral meni 
tear, viability of 
cartilage was bad 
due to broken 
isomet blade 

5 9D0C49  3/29/2010 6 Male Control       Impacted 1 151.1 34.5" 

NO ACL tear, 
but did have 
lateral posterior 
meniscal tear 

6 

HW38  3/30/2010 5.35 Male Control     healthy Impacted 1 200     

                

Impacted 2

    

Partial ACL tear, 
lateral meni tear 
in posterior 
region 

7 9V23  4/1/2010 6.2 Male Control     
Abnormalities, 
lateral meni not 
attached to femur 

Impacted 1 180.3 

  

Femoral shatter, 
lateral meni tear; 
Animal had 
cartilagenous 
"spurs" posterior 
to the knee on 
both tibia and 
femur 

8 

3D0C11  4/2/2010 7.1 Female Control       Impacted 1 170 34.75"   
                Impacted 2 160 34.75"   

                

Impacted 3

148.5 35" 

ACL tear, 
[partial ACL tear 
with medial 
meniscus tear in 
posterior region]
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9 

9D0C54  4/2/2010 5.45 Male Impacted 1       
Impacted 1

      

        Impacted 2       
Impacted 2

      

        Impacted 3     
Menisci appeared 
healthy and intact

Impacted 3
      

                
Impacted 4

    tibial fracture 

10 

Unmarked  4/6/2010 5.35 Female Impacted 1       
Impacted 1

      

        Impacted 2       
Impacted 2

      

        Impacted 3       
Impacted 3

      

        Impacted 4       

Impacted 4

    

tibial fracture 
near proximal 
end; did not 
harvest (partial 
ACL tear) 

        Impacted 5     

tibial fracture at 
tibialis cranialis 
insertion, did not 

harvest 
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Decalcification and embedding: Histology prep protocol 

Protocol originally written by: Meghan McGee; Modified by Megan Killian 
Time to Complete: 5-10 days for decalcification, 60+ minutes for slide prep (depending 
on number of samples you want to prepare) 
Supplies Required Supplier and 

Catalog 
Number 

Storage 
Conditions 

Location 

Gloves Fisher, 19-050-
221B (and 
221C, 221D) 

--- Portage wall 

Tetrasodium EDTA Sigma-Aldrich 
E6511 

Sealed Chemical cabinet by 
Instron 

Glacial acetic acid Chem Stores Sealed Chemical cabinet by 
Instron 

Pipette & tips   Portage wall 
Electronic balance  Clean Chalkboard wall 
Sucrose (white 
granulated sugar) 

Walmart Sealed Portage wall 

Embedding medium: 
Tissue-Tek® O.C.T.  

VWR, 25608-
930 

Tightly 
capped 

Portage wall or by 
centrifuge by cryostat 

Disposable Base Molds Fisher, 22-
038217 

--- Jeremy Goldman’s 
Lab 

Tissue Path High 
Profile Microtome 
blades 

Fisher Sci prod 
# 22-244-028 

Inside 
included 
container 

Cryostat 

Liquid nitrogen Chem Store Inside dewar Chem Store 
Slide glass (coated in 
gelatin-
chromagnesium) 

Large: Fisher 
Cat No. 12-
550A 
Small: VWR 
Cat No. 48300-
025 

--- Histology drawer 

Cover slips Large: Fisher 
Cat No. 12-
545H 
Small: Fisher 
Cat No. 12-
545B 

--- Histology drawer 

Old (broken) slide glass --- --- Slide preparation 
drawer in histology 
room 
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Preparation and Decalcification 

1. Remove meniscus from tibial plateau using appropriate techniques in order to 
maintain orientation and integrity of the tissue you wish to use. If sectioning 
meniscal body, use scalpel to separate meniscus at attachments and synovium 
from tibial plateau. Thoroughly remove soft tissue (including the synovium) with 
a scalpel 

a. If performing thickness measurements, do this step now 
b. If using only the meniscus body and not attachments, skip to step 11. 

For attachments only! 
2. If sectioning attachments, use diamond-blade bone saw in Rm 1006 to get bone 

block and do not cut meniscus.  
3. Section the meniscal attachment longitudinally (parallel w.r.t. collagen fibers of 

ligament) with a bandsaw to isolate separate sections for use in SEM and 
histology (or for regional comparisons between proximal and distal).  Clean off 
debris/visible marrow with a water jet, pat dry, and obtain the starting mass of the 
sample with the scale. 

4. Mix a batch of 14% tetrasodium EDTA. Store in a closeable container (e.g., old 
PBS or FBS bottle) under the fume hood. 

a. % is by weight: 500 ml of a 14% EDTA solution contains 70g of EDTA 
and 500 ml of deionized, distilled water (use deionized distilled water 
especially for samples to be used in IHC) 

5. Check the pH of the EDTA solution with a pH meter; the initial pH will be 
approximately 10.5.  Adjust the pH down to 7.6 by adding small amounts (1-3ml 
at a time) of glacial acetic acid with a pipette.  Check the pH after each addition, 
and stop when the pH is approximately 7.6. 

6. Pour a small amount of the EDTA solution into a glass beaker (~50 ml for 2-3 
bones)   

7. Place each meniscal sample in some sort of a water-permeable container so that 
each sample can be clearly identified and distinguished from one another (e.g., 
close inside a tissue cassette for small, cloth bag for larger samples). 

8. Submerge the sample(s) in the EDTA solution and cover with parafilm.  Place 
beaker under the fume hood for 24 hours. 

9. After 24 hours have passed, remove the sample from the EDTA with forceps, pat 
dry, and obtain mass. Resubmerge sample in fresh EDTA; dispose of used EDTA 
down the sink drain. 

10. Repeat steps 8 and 9  until sample no longer loses mass in the 24 hour period and 
begins to GAIN mass instead  
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a. mass is lost as EDTA chelates the mineral from the bone; mass will start 
to INCREASE when water begins to enter the tissue after decalcification 
is complete. This will likely take 3-10 days. 

For attachments AND Meniscal bodies 

11. When sample displays an increase in mass relative to its last mass reading, rinse it 
in distilled water and submerge the sample in a 1:1 mixture of O.C.T. and 30% 
sucrose. This can be done in a small beaker, or in one well of a 6 or 24-well plate 
(use the smallest well size possible to avoid wasting medium).  Place the 
container in a vacuum desiccator (without desiccant) and turn on vacuum. 

a. 30% sucrose = 75 g sucrose (white granulated table sugar) to 250 ml 
distilled water 

b. O.C.T. = Tissue-Tek® O.C.T. (Optimal Cutting Temperature) Compound 
NOTE: DO NOT change O.C.T. for another cutting medium like Neg-50 
cryomedia; they do not have comparable results, and O.C.T. has 
consistently worked well for bone and meniscal histology. 

 
Leave samples in sucrose/O.C.T. mixture under vacuum for ~ 3 days to allow 
the sucrose and OCT to penetrate the collagen matrix. Do not let the samples 
become uncovered by medium at any time (check samples daily and add more 
sucrose/O.C.T. as needed). The samples can be left in sucrose/O.C.T. mixture 
longer than 3 days if needed or if samples are thick. 

Embedding / Freezing / Sectioning 

1. Obtain a disposable base mold (Fisher TissuePath disposable base mold, 15 x 15 x 
5 mm).  Fill the indent in the mold with embedding medium (note: embedding 
medium is not the sucrose/OCT mixture used for fixation of tissue. It is just 
O.C.T., straight from the bottle) 

2. Place the decalcified sample in the filled indent, making sure that the specimen 
does not protrude (much) above the opening 

o Orient the specimen such that the bottom surface of the mold is the cutting 
surface for cryosectioning 

3. Cover the specimen with the embedding medium  - make sure the entire specimen 
is covered 

4. Grip the edge of the mold with hemastats and lower the mold into a Styrofoam 
dish filled with liquid nitrogen.  Leave the mold in the liquid nitrogen until the 
medium is completely frozen (usually when the liquid nitrogen no longer appears 
to be “boiling”).   
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5. Remove the mold from the liquid nitrogen and use forceps to pop the embedded 
specimen out of the mold.  Immediately set the embedded specimen inside the 
microtome so it will stay frozen or store samples in -20˚C until ready to use. 

 
Using the Cryostat 

6. Inside the microtome, place the gold chuck (grooved platform) in one of the first 
four holes in the “fast freeze rail” (2 columns of 6 holes each located on the far 
left inside the microtome).  The slots are numbered – the first four slots are 
exposed to the lowest temperatures, and are located at the bottom of the fast 
freeze rail.  Wait several minutes until the chuck is cold. 
 
 
 
 
 

7. Remove a blade from the blade container and grip it by the flat edge.  Raise the 
clamp on the right hand side of the blade holder and slide the blade in along the 
left hand side of the blade holder.  If it won’t go in, push gently on the bottom 
edge of the blade holder (the side closest to you).  Push the clamp back up to lock 
the blade in place. 

8. Wearing gloves, remove the chuck and hold the post in your hand, letting it warm 
up slightly.  Spread embedding medium on the face of the chuck (over the 
grooved surface, making sure it goes down into the grooves), and put the chuck 
back in the fast freeze rail hole.  NOTE: if the chuck is too cold when you put the 
medium on the grooved face, the medium will not go down into the grooves. You 
will have to pop off the frozen medium, wait for the chuck to warm up a bit more, 
and try again.  

9. As soon as crystals start to appear on the outside edges of the embedding medium 
on the chuck face (this will happen quickly) push your embedded specimen into 
the center.  It is best if you push the sample in flat side first (i.e., the side that was 
against the bottom of the mold) because this allows for a more even cut with the 
microtome blade. 

10. Allow the entire chuck/specimen combination to freeze inside the cryostat, and 
then insert the post of the chuck into the black chuck holder.  The black lever on 
the right secures the chuck in the holder, and the black knob on the left allows the 
chuck to rotate once it has been loosened. 
 
 
 

Chuck 
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11. Adjust the vertical position of the sample with the handwheel so that it is centered 
vertically with respect to the blade. 

12. Push the “up” arrow (blue, along the left hand side of the microtome, NOT next to 
the display) and hold it, and the specimen holder will move all the way back.  
Adjust the angle of the chuck face so that the specimen will cut well 
longitudinally. MAKE SURE THE BLADE GUARD IS UP when you do this.  
Once adjusted, push the “ACA” button, which will automatically advance the 
specimen to the blade. 

13. Set the cryostat to trim (60 works well, but do not exceed 100) by pushing the 
middle button on the left side of the microtome’s button panel next to the display 
(see below).  This button will switch between trim and fine.  The depth of the trim 
can be adjusted with the arrow buttons directly below the switch button. 
 
 
 
 
 
 

14. Using the handwheel on the right hand side of the cryostat, raise and lower the 
embedded sample to trim through the frozen medium until you start to see the 
bone appear. Continue trimming until a good longitudinal cross-section appears.  

Button to switch 
between trim & fine 

Chuck holder
(insert post) 

Pull down to 
secure chuckRotate / change 

angle of chuck

Blade guard 
(flips up) 

Blade clamp 
(up = unlocked)

Glass anti-curl 
plate (flips up)

Clamp for blade 
horizontal position 
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Adjust the angle of the chuck if the sample appears to be cutting unevenly (i.e., if 
sections appear to be thicker on one side, if they appear angled, etc.). MAKE 
SURE THE BLADE GUARD IS UP when you do this. 

15. Flip the “glass anti-curl plate” up so that any sections cut will slide into it 
underneath the glass; this will prevent sections from curling. 

16. Push the button (in Step 13) to switch to “Fine” instead of “Trim”.  Set the “Fine” 
depth to 10 um (using the arrow buttons) and begin cutting sections. If 10 um 
does not yield good sections, increase the “fine” depth until good sections are 
obtained. Raise the glass plate periodically to clean out any “junk sections” with 
the brush kept inside the microtome. 

17. When your first good (even thickness, longitudinal appearance) section is cut, 
transfer it to a piece of slide glass by raising the anti-curl plate and pressing a 
piece of slide glass against the specimen. Cut at least 2 more sections that you’ll 
dispose of before the next section you plan to transfer to a slide (so that they’ll be 
separated through the depth of the core).  Do not place more than 3 sections per 
slide or the cover glass will not fit.  Be careful of their placement when 
transferring to the slide glass – you won’t be able to move them once they’ve 
been stuck to the slide, so make sure they’re close enough together so that one 
coverglass will cover all 3.  Obtain a total of 6 sections (2-3 per slide; 2-3 slides) 
per core. The remaining specimen can be refrozen or disposed of. 

18. Remove the blade from the cryostat; raise the blade clamp to unlock it and use 
forceps to gently push along the right hand side of the blade, pushing the blade 
out the left side of the holder. Place the used blade in the disposal side of the 
blade container. 

19. Push the “Menu” button to the right of the display panel and scroll down using the 
arrow keys to the left of the display panel until you reach the “ILLUM” option.  
Select ( ) “Off” to turn the light inside the microtome off. Clean out any 
remaining junk by pushing it down the garbage chute in the bottom of the 
cryostat. 

20. Lay slides on a flat surface. 
21. Using a spray bottle, spritz 60˚C deionized distilled water on slides to remove 

bubbles and promote the section adherence to the slide. Do not dip slides in water 
or saturate the slides. Cover slides with paper towels without touching the slides. 
Allow to dry overnight. 
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Safranin O staining protocol 
Time Period:      75 minutes 

    

EQUIPMENT LIST: 
Prepared slides (prepared in the slide preparation protocol) 
Slide holder with handle 
Tupperware 
Distilled water 
Xylene 
Ethanol: 100%, 95%, 80% 
Weigerts iron hematoxylin working solution: mix equal portions of A and B. 
A – 5g hematoxylin in 500mL 95% ethanol 
B – 20mL of 29% ferric chloride solution (5.8g ferric chloride in 20mL distilled water), 
475mL distilled water, 5mL concentrated HCl 
Tap water 
Fast green FCF solution (0.1g fast green FCF in 1000mL water) 
1% acetic acid solution (10mL glacial acetic acid and 990mL distilled water) 
0.1% safranin O solution (1g safranin O in 1000mL distilled water) 
 
PROCEDURE: 
Place the slides in the slide holder.   
2. Stain with Weigert’s iron hematoxylin working solution for 10 minutes.   
3.  Wash in running tap water for 10 minutes.  
4.   Stain with fast green (FCF) solution for 5 minutes.  
5.   Rinse quickly with 1% acetic acid solution for no more than 10 –15 seconds.  
6.   Stain in 0.1% safranin O solution for 5 minutes.  
7.   Dehydrate and clear with 95% ethanol, absolute ethanol, and xylene, using 2 
changes each, 2 minutes each.  
 
Results: 
- GAGs: red 
- Nuclei: black 
- Cytoplasm: gray-green 
- Cartilage, mucin, mast cell granules: orange-red 
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Alizarin Red protocol 
  
Fixation: Formalin fixed, OCT cryosectioned samples 
  
Positive Control: bone 
   
Solution and Reagents: 
  
Alizarin Red Solution: 
  
    Alizarin Red S: 2 g 
    Distilled water: 100 ml 
    Mix well. Adjust the pH to 4.1~4.3 with 10% ammonium hydroxide or hydrochloric 
acid. The pH is critical. 
  
Acetone (100%) 
  
Acetone-Xylene (50/50) 
  
   Acetone (100%) : 50 ml 
   Xylene : 50 ml 
  
Procedure: 
  

1. Rehydrate samples on slides in distilled water for 5min. 
2. Stain slides with the Alizarin Red Solution for 30 seconds to 5 minutes, observe 

the reaction microscopically.  
3. Shake off excess dye and blot sections. 
4. Dehydrate in acetone, 20 dips.  
5. Then dehydrate in Acetone-Xylene (1:1) solution, 20 dips. 
6. Clear in xylene and mount. 

 Results: 
  
Calcium deposits (except oxalate) -------- orange-red 
This precipitate is birefringent. 
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Immunohistochemical staining for Col I/II- protocol 
(Separate 2˚ antibody and Fluoro labeling) 
 
NOTES: 
Reconstitute primary and secondary antibodies if lyophilized  
Aliquot antibodies, proteinase K to prevent freeze/thaw cycles 
 
Consumables: 
Distilled water 
Deionized, distilled water 
PBS 
PAP Pen 
Permanent marker 
Glass cover slides 
Slide holder 
Tupperware with lid 
Aluminum foil 
Pronase (1mg/ml) 
Hyaluronidase 
Proteinase K dilution: 20ug/ml (1:500 in PBS) 
Blocking Buffer: 
10% goat serum, 1% bovine serum albumin in PBS 
1.25ml goat serum, 11.25ml PBS, 125mg BSA 
 
Primary incubation 
1:400 dilution in blocking buffer for collagen type I 
1:5000 dilution in blocking buffer for collagen type II 
2ml blocking buffer and 5ul primary is good for ~4 sections 
 
Secondary incubation 
Biotinylated anti-mouse f(ab) fragment IgG antibody 
1:50 dilution in blocking buffer 
2ml blocking buffer and 40ul secondary 
 
Propidium iodide: stock solution made to 1mg/ml in PBS 
DILUTE stock solution to 1ug/ml in PBS prior to staining 
Label- AlexaFluor Streptavidin conjugated or Extravidin-FITC 
1:50 dilution in PBS  
2ml PBS and 40ul Label 
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Methods: 
Place slides in slide holder and rinse with distilled water    RT 5’ 
Dry slides using Kimwipe, do not touch wipe to samples. 
Surround samples with PAP pen and rinse samples in PBS   RT 2x5’ 
Cover samples with Pronase 1mg/ml in PBS    37˚C 30’ 
Rinse with PBS       RT 2x5’ 
Cover samples with Hyaluronidase 1% in PBS   37˚C 30’ 
Rinse with PBS       RT 2x5’ 
Cover samples with proteinase K (20ug/ml)    RT 6’ 
Rinse with PBS       RT 2x5’ 
Pre-incubate samples with blocking buffer    RT 2hrs 
Incubate samples in Primary Incubation    Overnight at 4˚C 
Avoid sample dry-out: store slides in a covered Tupperware container with a damp 
(dH2O) cloth 
Rinse with PBS       RT 3x5’ 
Incubate samples in Secondary Incubation    RT 1hr 
Rinse with deionized, distilled water      RT 5’ 
AVOID LIGHT! FOR STEPS 15 onward, work in dark! 
Incubate samples in propidium iodide (1ug/ml)   RT 15’ 
Rinse in deionized, distilled water     3x5’ 
Cover samples with Label (extravidin or Alexa Fluor)  RT 1hr 
Mount with coverslip 
Image immediately thereafter 
Keep covered with aluminum foil at 4˚C 
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RT-PCR protocol 
EQUIPMENT: 

 Thermo cycle PCR machine 
 Pen 
 Appropriate holders  
 Pipettors (10 and 100ul) 

 
CONSUMABLES: 

 Pipette tips (10-100ul) 
 Kimwipes 
 1.5ml tubes 
 PCR tubes 
 Ice (crushed) 
 Gloves 

 
CHEMICALS: 

 70% isopropanol to sterilize  
 RNA away to clean 
 Random Primers 
 Nuclease free H2O 
 dNTP (10 mM dNTP mix) 
 5x buffer 
 0.1M DTT 
 RNAse out                           -enzyme keep in ice 
 RNAse H                             -enzyme keep in ice   
 SuperScript II (SSII)           -enzyme keep in ice 

 
Preparation 

1. Wear gloves all the time. 
2. Clean the gloves and table surface with isopropanol and RNA away. 
3. Put chemical needed to make mix 1 and 2 in the crushed ice (except enzymes). 
4. Label tubes (samples and mix tubes). 

o If there are strip tubes that can no longer be used for qPCR because they 
are not the right type of tube, these can be used for RT reactions.  

5. Calculate amount of water and RNA to pipette for each sample: 
o RNA = 300ng of RNA  
o X = volume of RNA that is equal to 300ng 
o Y = volume of water that, when added to X, equals 10.66µL volume 

 Superscript II can be used with up to 500ng of mRNA. We have 
chosen to use 300ng/rxn for RT experiments. 

 Random Primers can be 50-250ng/reaction. We have chosen to use 
100ng/rxn for RT experiments. 
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6. Switch PCR machine on and load appropriate program (details in the PCR 
machine short guide). 

7. Calculate amount of each chemical needed for number of run reactions according 
to procedure below. 

 
NOTE: Calculating we assume that we will loose some of the mix for pipetting error so 
always multiply by number of reactions + 10% 

Example: 
If you planning to run 10 reactions. Calculate amount of each chemicals for 11 
reactions.  

 
One RT-reaction is typically enough RNA to run a single plate with six different genes. 
Therefore, it is beneficial to perform several RT reactions with the same RNA at any 
given time. Additionally, cDNA is more stable than RNA, and therefore will be less 
likely to degrade over time at -20˚C.  
 
Reaction Conditions: 

 300 ng of RNA 
 100 ng of Random Primers 
 0.25 μl (50 units) SS II 

 
Mix 1: 
dNTP                        1 μl  
Random Primers       0.33 μl (from diluted tube- have to be 100 ng)  
RNA                          X- depend on RNA concentration (have to be 300 ng)  
H2O                           Y- to complete 12 μl 
TOTAL:                              12 μl per PCR tube 
RNA and H2O are pipetted into PCR tubes individually; not mixed in Mix 1 
 
Mix 2: 
5x buffer                    4 μl 
0.1M DTT                 2 μl 
RNAse out                 1 μl   (enzyme add at the end, keep in ice)     -destroy RNAse 
TOTAL:                                7 μl per PCR tube 
 
SS II: 
TOTAL: 1 μl (if 200 units than 0.25 μl SSII + 0.75 μl H2O) –enzyme keep in ice 
RT Reaction TOTAL:          20 μl 
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Procedure 
1. Pipette calculated amount of dNTP and Random Primers to mix 1 tube. 
2. Take RNA samples from -80°C freezer and place them in ice to thaw. 
3. Pipette H2O to each PCR tube (since tubes are empty you do not have to change 

pipette tips every time). 
4. Pipette RNA to each PCR tube which contains water already. Mix gently with 

pipettor. Change pipette tips every time.  
5. Put RNA samples back to -80°C freezer. 
6. Pipette 1.33ul to each tube from mix 1 tube. Mix gently with pipettor. Change 

pipette tips every time. 
7. Close tubes tightly and place them in the PCR machine, start program (how to 

start the program look at the short PCR machine guide). 
8. While waiting prepare mix 2 by pipetting calculated amount 5x buffer and 0.1M 

DTT. Do not pipette RNAse out till the last moment. Mix gently with pipettor. 
9. Pause PCR machine (how to pause PCR machine look at short guide), take the 

samples out and chill them in ice, while waiting pipette calculated amount of 
RNAse out to mix 2 tube. Mix gently with pipettor. 

10. Pipette 7ul of mix 2 to each tube. Mix gently with pipettor. Change pipette tips 
every time. 

11. Close tubes tightly and place them back to PCR machine, restart the program 
(how to restart the program look at short PCR machine guide). 

12. While waiting prepare SuperScript II (SSII) mix. Pipette SSII in the last moment. 
Mix gently with pipettor. 

13. Pause PCR machine, take the samples out and add 1ul of SSII mix to each tube. 
Mix gently with pipettor. Change pipette tips every time.  

14. Close tubes tightly and place them back to PCR machine, restart the program. 
15. If run 

a. With break 
i. Stop PCR machine. 

ii. Load second part of PCR program. 
iii. Pipette to each tube 0.4ul of the RNAse H-keep the enzyme cold. 

Mix gently with pipettor. Change pipette tips every time. 
b. Without break 

i. Pause PCR machine (how to pause the program look at short PCR 
machine guide). 

ii. Take tubes out from PCR machine and pipette 0.4ul of the RNAse 
H to each tube. Mix gently with pipettor. Change pipette tube 
every time. 

iii. Close tubes tightly and place them in the PCR machine, restart 
program (how to restart the program look at short PCR machine 
guide). 

16. When program is finished, take tubes out from PCR machine and place them in -
20°C freezer for long storage. 

17. Switch off PCR machine. 
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Find RT program on thermocycler machine (make sure protocol is similar to below) 
or: 
Reprogram thermocycler using the following protocol 
Protocol 

1. 65˚C                         5min   -mix 1 
chill on ice & add mix 2 

2. 25˚C                         2min 
add SS II & mix well (enzyme keep cold) 

3. 25˚C                        10min 
4. 42˚C                        50min 
5. 70˚C                        15min 

break if needed  
a. 4˚C               5min 
b. 10˚C           forever 

Add 0.4 μl RNAse H (enzyme keep cold)                        -destroy RNA 
6. 37˚C                        20min 
7. 65˚C                        20min 
8. 4˚C                          5min 
9. 10˚C                        forever 
TOTAL:                             127min (without break) 
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Real Time PCR (QPCR) protocol 
Time of set up:  90min (~30 min work in the dark) 
Time of reaction:  2.5 h 
Total time: 4h 
 
Supplies 

 Tube stripes or plates with covers 
 Pipette with filter pipette tips 
 RNA/DNA free tubes for master mix dilution 
 RNA/DNA free tubes for cDNA and Primers mixes 
 Appropriate Holders 
 Dark room with the hood 
 qPCR machine in room 154 of Forestry building 

  
Chemicals: 

 Nuclease free water (in freezer) 
 SYBR (light and temperature sensitive, aliquot after arrival and minimize number 

of refreeze, keep in the aluminum foil, in freezer) 
 Primers Forward (FWD) and Reverse (REV) (in freezer) 
 Sample cDNA (in freezer) 
 RNAase away in spray bottle 
 70% isopropanol in spray bottle 
 Crushed ice 

 
Chemical Recipes  

cDNA mix: 
0.5 uL cDNA (15 ng)  
1.5 uL Nuclease free H2O 
Total: 2.0 uL to each well 
 
Primer mix: 
0.5 uL Fwd primer  
0.5 uL Rev primer 
1.0 uL Nuclease free H2O 
Total: 2.0 uL to each well 
 
Master mix: 
12.5 uL SYBR 
7.5 uL Nuclease free H2O 
Total: 20.0 uL to each well 
Note: Each sample will be run in duplicates. 
 



www.manaraa.com

185 
 

Procedure 

Pre-preparation: 
1. Wipe down pipettes first with isopropanol and then with RNAase Away. 
2. Fill bowls with crushed ice. 
3. Remove all chemicals needed from freezer. 
4. After melted, centrifuge each chemical (except the Sybr-Green). 
5. Put all chemicals on ice.  Keep SYBR-Green covered with aluminum foil until 

needed. 
6. Wipe down the hood with isopropanol. 
7. Turn the blower and the light on in the hood. 
8. Conduct all procedures from now on in the hood. 
9. Spray gloved-hands with isopropanol and RNAase Away.  If anything outside of 

the hood is touched, spray gloved-hands again. 
Hints:  It is helpful to make all the recipes for the mixes (formulas down below) and tube 
strip grid beforehand.  Mix all chemicals by pipetting or flicking before transferring.  Be 
careful mixing Sybr-Green, it is very sensitive to degradation. 
 
Standard curve: 
 
The standard curve procedure is not included in this protocol.  The standard curve only 
needs to be completed when the genes of interest have never been tested for in qPCR.  
Otherwise, use old efficiency values for the specific gene. 
 
Preparation of the cDNA mix (need Calibrator and NTC along with sample cDNA): 

1. You will prepare a separate cDNA mix for each cDNA being tested, but all 
calculations will be the same for each cDNA mix. 

2. Calculate how much of the cDNA mix components you will need (in uL): 
a. cDNA = (# of wells specific cDNA will be in + 1) * 0.5  
b. Nuclease free H2O = (of wells specific cDNA will be in + 1) * 1.5 

3. Get out X RNA/DNA free tubes.  (X = the number of cDNAs being tested) 
4. Label the RNA/DNA free tubes with a symbol of the cDNA which will be run. 
5. Fill each tube with the calculated (in # 2) amount of nuclease free water. You do 

not have to change the pipette tips each time. 
6. Fill each tube with the calculated (in # 2) amount of cDNA (specific for each 

cDNA). Change the pipette tip every time. Mix each gently with the pipette.  The 
cDNA for the NTC is Nuclease free H2O. 

 
Preparation of the Primer mix: 

1. You will prepare a separate primer mix for each gene being tested, but all 
calculations will be the same for each primer mix. 

2. Calculate how much of the primer mix components you will need (in uL): 
a. F Primer  = (# of wells specific primer will be in + 2) * 0.5 
b. R Primer = (# of wells specific primer will be in + 2) * 0.5 
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c. Nuclease free H2O = ((# of wells specific primer will be in + 2) * 1.0) 
3. Get out X RNA/DNA free tubes.  (X = the number of genes being tested) 
4. Label the RNA/DNA free tubes with a symbol of the gene which will be run. 
5. Fill each tube with the calculated (in # 2) amount of nuclease free water. You do 

not have to change the pipette tips each time. 
6. Fill each tube with the calculated (in # 2) amount of Forward and then Reverse 

primers (specific for each gene). Change the pipette tip every time. Mix gently 
with the pipette. 

 
Preparation of master mix: 

1. Calculate how much of the master mix components you will need (in ul): 
a. SYBR Green = (# vertical well depth* # horizontal well depth + 5) * 12.5 
b. Nuclease free H2O = ((# vertical well depth* # horizontal well depth + 5) 

* 7.5 
2. Label the tube for master mix and fill it with the calculated (in number 1) amount 

of nuclease free water. 
3. Turn off the lights. 
4. In the dark, pipette the calculated (in # 1) amount of SYBR to the master mix 

tube.  Mix gently with the pipette. 
5. Cover with aluminum foil. 

 
QPCR tube strips (or plates) creation (you can reverse axis if desired): 
 

 
 
or 
 

 
 

1. Pipette 2 uL of specific primer mix to each well.  Each specific primer mix will 
go vertical.  The pipette tip only needs to be changed between genes. 

2. Pipette 2 uL of specific cDNA mix to each well.  Each specific cDNA mix will go 
horizontal.  The pipette tip needs to be changed each time. 
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3. In the dark, pipette 21 uL of master mix to each well.  The pipette tip needs to be 
changed every time. 

4. In the dark, put the cover tightly on the tubes and cover with aluminum foil. 
5. Carry the tubes to the Forestry building. 
6. In room 147 and in the dark, mini centrifuge each tube strip.  Re-cover with 

aluminum foil. 
7. Carry the tubes to the real-time machine (room 154 in the Forestry building).  
8. Set up the input file (can be prepared earlier).   When creating a new file, click on 

the calibration option.  To insert of dissociation curve, import it from an existing 
file. 
Plate Set up 

1. Mark wells as: 
Unknown = samples 
NTC = for nonspecific control 
Calibrator = calibrator 

2. For all wells in use, choose the universal mix as Sybr Green (SYBR) 
3. Mark duplicates. 
4. Give names to all wells by going to the grid view and typing the name in. 

Thermal Profile: 
Hot start 

95°C /15min  
Beginning of the cycle 

95°C/15sec 
X°C/Z sec  determined empirically for specific primers 
72°C/40sec 

End of the cycle 
Run for 40 cycles 
Dissociation cycle 

9. In the dark, place each stripe in the assigned column in the real time machine. 
10. Let the machine lamp warm up for 20 minutes.  Choose the option that the test 

will begin after lamp is warmed up. 
11. Check the box that will switch off the lamp after the run is completed 
12. Run the open file where the conditions of the experiment are specified (each run 

takes around 2.5 hour). 
 

Results analysis 

Data analysis is carried out using Pfaffl’s method according to the equation: 
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( ) ( )treatedcontrolrefC
ref
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Where: Ct- cycle number in the linear range of amplification, E- efficiency of the process 

for each gene, target- gene of interest, ref- housekeeping gene, control- calibrator, 

treated- sample 

NOTE: Remember where you read Ct values form QPCR software set your threshold line 
constant for each gene through whole experiment. 
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Western blotting protocol 
 
Protein Isolation: 

1. Using ice-cold RIPA buffer (3mL/1g tissue), lyse tissue and homogenize. 
2. Centrifuge at 14000g for 10minutes at 4°C. 

 
Preparing Total Protein Sample for Western Blot 

1. After obtaining concentration of total protein in sample using Lowry method, 
calculate necessary amount of sample solution that will give ≥10ug of total 
protein, and place in a microcentrifuge tube. Do this for each sample because the 
solution amounts will most likely be different for each. 

2. Combine sample and deionized water to 54.5ul volume  
3. Buffer used is 4X LDS PAGEgel buffer (25ul)  
4. Add 10% Beta-mercaptoethanol in hood with fan on! (20.5ul) 
5. Perform the above steps for marker and std. protein, using 10ul of marker/protein 

and 44.5ul ddH2O 
6. Heat mixture for 10 minutes at 70°C in hot water bath 
7. Flick and centrifuge sample ≤10’ to mix solution, and bring sample to bottom of 

tube 
 
Running a Gel: 

1. Remove ready-gel from storage pouch. The comb has been removed from the gel 
already. 

2. Open cams to release existing casting plate 
3. Place gel cassette sandwich into the slots at the bottom of each side of the 

electrode assembly. Be sure the short plate of the gel cassette sandwich faces 
inward toward the notches of the U-Shaped gasket 

4. Life the gel cassette sandwich into place against green gasket and slide into 
clamping frame 

5. Press down on the electrode assembly while closing the two cam levers of the 
clamping frame to format the inner chamber and to insure a proper seal of the 
short plate against the notch of the U-Shaped gasket. Short plate must align with 
notch in gasket 

6. Lower the inner chamber assembly into the minitank. Fill the inner chamber with 
200mL running buffer until the level reaches halfway between the top of the 
taller and shorter glass plates of the gel cassettes. Check for leaks. Do not overfill, 
may cause problem with transfer. 

7. Add 600mL running buffer to minitank, or lower chamber. 
a. PAGEgel Running buffer MUST be used! 
b. Make 600mL of 1xRunning buffer (dilute 30mL 20X PAGEgel Running 

Buffer with 570mL ultrapure water for a run). 
c. The buffer may be reused on the outer (anode) side, but fresh buffer is 

always required on the inner (cathode) chamber 
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d. When reusing buffer, dilute 10mL of PAGEgel Running Buffer (20X) to 
200mL with ultrapure water for the inner chamber 

 
Gel Loading 

1. Spin down solution before beginning to get all liquid to the bottom of the 
tube 

2. Be sure all bubbles are out of the wells before beginning. Do this by 
tapping on the outside walls of the gel to get them out. 

3. Always use small pipette tips. Large ones separate gel walls decreasing the 
volume to level below wells make it very difficult to load the right amount 

4. When obtaining sample, wipe pipette tip on side of microcentrifuge tube 
to remove excess 

5. Rinse wells with ddH2O twice, then fill with ddH2O before loading. 
6. To load gels, guide the pipette with other hand index finger near the tip of 

the pipette and press tip against the back of the front surface of the gel and 
guide it into the well. Release all fluid without over-pushing on the 
pipette. 

 
Running: 

1. Attach to power supply. 
2. Place cover on cell in color coded fashion. 
3. Attach leads in color coded fashion to power supply 
4. Set voltage requirement to 175VDC and all the amps to vary starting at 

80mA/gel 
5. When reusing running buffer in the anode side (outer chamber), run at 

150VDC, starting at 60mA/gel. 
6. Depress the run button on the power supply. Should see effervescence due 

to hydrolyses of solution caused by electrical current 
7. Gel should be run to bottom within 35-90’. Need to watch. 

 
 
PROTEIN TRANSFER 

1. Make 1L of transfer buffer made with 10% methanol (dilute to 20x instead of 
10x) 

a. Transfer buffer: 50mL, Methanol: 100mL, ddH2O: 1850mL 
2. Cut membrane and filter paper to dimensions of gel (Wear gloves when handling 

membranes) 
3. Equilibrate gel and soak filter paper and fiber pads in transfer buffer for 15mins 

a. Removes contaminating electrophoresis buffer salts. 
4. PVDF membranes must first be wetted in 100%MeOH and then soaked in transfer 

buffer for 15minutes. Do this while running gels. 
5. Prepare gel sandwich order: 

a. Gray side of cartridge down 
b. Fiber pad 
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c. Filter paper 
6. Gel-remove ridge and excess well strippings and cut one corner for location 

purposes using a piece of plastic or other sharp edge. Place face up on filter paper. 
a. Membrane 
b. Filter paper 
c. Fiber pad 
d. Close it up 

7. MAKE SURE there are no bubbles present anywhere at any time during creation 
of sandwich! Roll them out with a glass rod or put on glove and use fingertips. 

8. Membrane must be on positive side of transfer case in order to allow the 
negatively charged proteins to relocate to the membrane from the gel. 

9. Place cassette in module 
10. Add cooling unit with ice shavings to opposite end. If ice shavings not available, 

fill cooling unit with water and place in freezer until frozen. 
11. Fill with transfer buffer. Transfer cell capacity, 650mL with cooling unit 

inserted. 
12. Put on lid and connect to power supply in color coded fashion 

a. 50Volts, 2-4hrs, expected current around 250mA 
13. Upon completion, disassemble sandwich and remove membrane for development 
14. Clean cell, fiber pads, and cassettes with lab detergent and rinse well with 

deionized water 
15. Filter pads and gel can be pitched if transfer was successful 

 
MEMBRANE BLOCKING 

1. Wet the membrane in PBS for several minutes. If using a PVDF membrane that 
has been allowed to dry, pre-wet briefly in 100% methanol and rinse with double 
distilled water before incubating in PBS.  

2. Block the membrane in BSA blocking buffer for 1hour. Be sure to use sufficient 
blocking buffer to cover the membrane (a minimum of 0.4mL/cm2 is suggested) 

3. Membranes can be blocked overnight at 4°C if desired 
4. DO NOT add TWEEN-20 when blocking the membrane. The membrane should 

not be exposed to Tween-20 until blocking is completed 
5. DO NOT USE CASEIN with biotynylated antibodies 
6. Dilute the primary antibody in BSA blocking buffer. Optimum dilution depends 

on antibody and should be determined empirically. A suggested starting range is 
1:1000 or 1:5000. To lower background, add 0.1-0.2% Tween-20 to diluted 
antibody before incubation.  

7. Biotinylated Anti-porcine IL-1α Antibody can be used at 0.1-0.2ng/mL 
8. Incubate blot in 1° for 60” or longer at room temp with gentle shaking. Use 

enough antibody solution to completely cover membrane. 
9. Was membrane 4x for 5” each at room temp in PBS + 0.5% Tween-20 wth gentle 

shaking using a generous amount of buffer. 
10. Dilute the fluorescently-labeled 2° antibody in BSA blocking buffer. Avoid 

prolonged exposure of antibody vial to light. Suggested dilution in 1:5000 to 
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1:20,000 with 1:10,000 as a good starting point. Add Tween-20 to the diluted 
antibody as you did for the 1° antibody. Add SDS if desired. 

11. For detection of small amounts of protein, try using more 2° antibody 
12. Be careful not to introduce contamination into antibody vial 
13. Diluted 2° antibody can be saved and reused. Store at 4°C and protect from light. 

However, for best sensitivity and performance, use freshly diluted solution 
a. Adding 0.01%-0.02% SDS to the diluted 2° antibody in addition to 

Tween-20 will substantially reduce membrane background, particularly 
when using PVDF. However DO NOT use SDS during blocking or to the 
diluted 1° antibody. 

14. Incubate blot in 2° antibody for 30-60” at room temp with gently shaking. Protect 
from light during incubation 

15. Allowing incubation to proceed more than 60” may increase background 
16. Wash membrane 4x for 5” each at room temp in PBS +0.1% Tween-20 with 

gentle shaking. Protect from light. 
17. Rinse membrane with PBS to remove residual Tween-20. The membrane is now 

ready to scan. 
18. Scan in appropriate channels using the LICOR Odyssey 
19. Protect membrane from light until it has been scanned 
20. Keep membrane wet if you plan to strip and reuse it. Once membrane has dried, 

stripping is ineffective 
21. Blots can be allowed to dry before scanning if desired. Signal strength may be 

enhanced on a dry membrane. The membrane can also be rewetted for scanning 
22. The fluorescent signal on the membrane will remain stable for several months, or 

longer, if protected from light. Membranes may be stored dry or in PBS buffer at 
4°C 

23. If signal on membrane is too strong or too weak, re-scan membrane at lower or 
higher scan intensity setting, respectively. 

 
Running Buffer for use with PAGEgels: 
 
Standard SDS Running Buffer, 20x for Reduced Samples (CB60500) 
(0.8M Tricine, 1.2M Tris, 2% SDS, 50mM Sodium Bisulfite) 
Tricine (free acid)* 71.7 g 
Tris (free base)* 72.6 g 
SDS   10.0 g 
Sodium Bisulfite 2.5 g 
Ultra-pure water to 500 ml 
pH should be between 8.2 and 8.3 at 25°C.  
 
For non-reduced samples (especially antibodies), omit the Sodium Bisulfite. 
For DNA and Native PAGE, omit both the bisulfite and the SDS; pH is slightly higher. 
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Transfer Buffer for use with PAGEgels: 
 
Tris-Glycine-SDS Transfer Buffer, 10x (CB82500) 
(0.25M Tris, 1.92M Glycine, 0.1% SDS) 
 
Tris (free base)* 15.2 g 
Glycine*   72.1 g 
SDS   5.0 g 
Ultra-pure water to 500 ml 
pH should be between 8.5 and 8.6 at 25°C. 
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Drop sled control protocol 
 
Required components 

• National Instruments DAQ card 
• NI USB 6008 
• Relay in enclosure 
• Rails/stand 
• 1.75kg drop sled 
• PCB accelerometer and specialty platen 
• Hexcell 
• Solenoids 
• Rabbit “bed” 
• Foot “boot” 
• Velcro (2sided) 

Directions 
1. Return drop sled to bottom of rails 
2. Apply graphite lubricant to rails 
3. Plug in NI 6008 A/D USB to USB port on computer with LabView program  
4. Plug in co-axial cable into relay box 
5. Plug relay into outelet 

a. Solenoids are in parallel 
6. Open Labview  

a. Open Dropsled.vi  
b. Run program 

7. Plug in force transducer to DAQ card using microdot cable 
a. DO NOT BEND OR CRIMP microdot cable! 

8. Use toupee tape and/or duct tape to adhere Hexcell to load cell platen 
a. Make sure indentation for knee on Hexcell is aligned appropriately 

9. Test DAQ 
a. Green light on 

i. Allow to run for a few minutes 
10. Balance load cell 
11. Turn green light of 
12. Align knee using Velcro straps 

a. Impactor head (Hexcell) should be *just* proximal to patella 
b. Knee should be flexed to slightly less than 90 degrees 
c. Make sure impaction will load tibia axially. If off, it will lead to gross 

bone fracture 
13. Use manual control of solenoids to move impactor up and down 
14. Once alignment is properly ensured, raise impactor to appropriate height  
15. Set .vi program seting to automatic 

a. Pick appropriate threshold 
16. Impact knee by pressing “Release” button when ready 
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Rabbit handling and euthanasia protocol 
 
Materials 
Acepromazine: from FisherSci; 10mg/ml Vedco  
Potassium chloride: 2mmol/kg [100g KCl dissolved into 1000mL ddH2O) 
10cc hypodermic needles, 21gauge needles or smaller 
5cc hypodermic needles, 21 gauge needles or smaller 
JD Medical VT-110 small animal anesthesia unit: includes, vaporizer, (0.5-1L) Bain’s 
non-rebreather bag, oxygen flowmeter, oxygen regulator, high pressure hose for oxygen, 
anesthesia filter, sodasorb for rebreather if needed, proper adapters for hoses, nose cone 
(large canine) 
Handling 

1. Grab animal behind head on scruff of neck 
2. Handle by skin and support weight of animal with hand under stomach or around 

rear. 
3. Keep animal’s face tucked in your elbow  

 
Inspect all equipment before performing euthanasia. This includes making sure that the 
rubber on the nose cone  and non-rebreathing bag do not have holes or deformities. Make 
sure oxygen tank is full and isofluorane is full. 
Euthanasia 

1. Weigh animal 
2. Use scale with containment 
3. Tranquilize with acepromazine (maleate injection) 

a. Use 0.5mg/lb 
4. Err on higher dosage of tranquilizer. For example, if the animal weighs 12lbs, 

tranquilizer dosage will be 0.6ml. Give animal >0.6mL.  
5. Inject the tranquilizer under the animal’s fur. Pull up on nape of neck, inject into 

the fold of skin where there is a “void” between skin and musculature. Skin will 
make an “A” shape. 

6. RELAX: Return animal to cage to distress and all tranquilizer to set in 
7. Make sure Isofluorane levels are high enough in tank of vaoporizer.  
8. Turn on oxygen to 1% (black ball should rise to 1%) 
9. Euthanize: Turn on isofluorane to 5% using knob 
10. One person should hold the animal from the side, making sure its face is easy to 

get to with the mask 
11. Another person should hold the nose cone to the animal’s face 
12. Non-rebreather bag should be closed 
13. Cover animal’s mouth and nose completely with nose cone 

a. It is ok if the animal pushes their face into the nose cone; However, avoid 
discomfort of the animal by preventing the rubber of the cone to touch 
their eyes 

14. Animal should be restrained by one person throughout this process in order to 
prevent escape during delirium 
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15. Hold scruff to prevent their nose and mouth from coming out of the nose cone 
16. Use extreme caution not to breathe vapors or gas 
17. Watch animal’s breathing and prepare both nose cone holder and rabbit restrainer 

for delirium 
18. Avoid animal’s nose from getting pushed against inside of nose cone 
19. After fight/flight delirium, the animal will become limp. Maintain gas flow but 

reduce to 1-3% isofluorane flow. 
20. Watch and listen for heart beat. Overdoes of isofluorane will euthanize the 

animal. 
21. If the animal does not become successfully euthanized after ~5min post-delirium, 

use intracardial injection of potassium chloride  
22. Intracardial injection 

a. Should only be performed by a trained professional! 
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Acute response - Rabbit dissection protocol 
 
Supply Check List: 

• 70% isopropanol 
• RNALater 
• Sterile 24-well trays 
• Dulbecco’s Modified Eagles Medium (DMEM) 
• Ham’s F12 
• Fetal Bovine Serum (FBS) 
• Penecillin/Streptomyicin (P/S) 
• Sterile Dissection tools—scalpel blades, tweezers, scissors, etc… 

 
1. Make Growth and Flow Media 

a. Media: 48.5 % DMEM/F-12, 2% FBS, 1% Penn/Strep 
a. Place all media ingredients into 37˚C water bath for ~15 min. 

i. Mix media in culture hood: 
ii. 40 ml media per animal 

b. Make sure media is 37˚C before use with any tissue. 
2. Dissection and Explant Removal 

a. Dissect limb from hip joint. Spray fur with isopropanol to wet hair and 
remove skin. Spray with isopropanol but be careful not to get any under 
the musculature. 

b. Dissect fresh rabbit knee in culture hood using aseptic technique and 
sterile tools only. 

c. Image tibial plateaus (with intact menisci) and femoral condyles using a 
digital camera. 

i. Undercut facets leaving 3-4 mm of bone with rotary tool, irrigate 
with sterile PBS continuously. 

ii. Rinse twice in sterile PBS, then rinse three times in culture media. 
iii. Place tissue pieces in individual wells of a 6-well plate, keeping 

top surface up.  
iv. Fill wells with ~1ml of growth media. Make sure to cover all tissue 

with growth media. Place lid on wells. 
d. Incubate for 24hr in 37C with 95% humidity to help maximize the 

percentage of dead cells 
i. Place in incubator for 12 hours 

ii. After 12 hours of incubation, remove media and store at -80˚C. 
Replace immediately with fresh, 37˚C growth media. Place in 
incubator for 12 more hours. 

iii. After 24 hrs total incubation time, remove media with pipette, store 
at -80˚C. 

e. For cell viability of meniscal sections: 



www.manaraa.com

198 
 

i. Remove medial and lateral meniscus and place in dish containing 
sterile Phosphate Buffered Saline 1X (PBS) 

ii. Place meniscus on clean surface (Plexiglass) 
iii. Mark bottom of meniscus with India Ink  
iv. Slice coronal sections from central-substance of both medial and 

lateral meniscus for 100-200um sections using custom slicing 
device. Include tears in slice if present. 

v. Place remaining anterior and posterior tissue of menisci in 
RNAlater for separate study. 

vi. Proceed to cell viability protocol. 
f. For cell viability of cartilage sections: 

i. Adhere cut surfaces of bone to plexiglass using cyanoacrylate. 
Allow ~2min to fully cure. 

ii. Use diamond saw to cut coronal sections of tibial plateau from the 
posterior region (posterior of the cruciate ligaments). Irrigate 
sections continuously during cutting with saline or PBS. 

iii. Obtain 2-3 full-thickness slices of cartilage/subchondral bone for 
cell viability. 

iv. Proceed to cell viability protocol as directed by manufacturer. 
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Cell viability protocol 
 

• LIVE/DEAD cytotoxicity kit (Invitrogen) 
• ddH2O 
• PAP pen 
• Incubation trays or petri dishes, covered in foil 

 
 

1. Remove reagents from freezer and allow to thaw to room temperature. 
2. Place thin slices of tissue in petri dish and circle with PAP pen. Keep sample 

hydrated with sterile PBS. 
3. Add 20ul of supplied 2mM EthD-1 stock solution to 10mL sterile PBS. Vortex to 

ensure thorough mixing. 
4. Combine reagents by transferring 5uL 4mM calcein AM stock solution to 10mL 

EthD-1 solution.  
5. Resulting solution is 2uM calcein AM and 4uM EthD-1 working solution. 
6. Add 100-200uL of working solution to sample, be sure to cover the entire sample 

with solution. Cover the dish to prevent the samples from drying out and incubate 
samples for 30-45min at room temperature.  

7. At the end of incubation, rinse samples with PBS. Mount onto slides using fine-
tipped forceps or cover with plastic cover slips in petri dish. 

8. Image using fluorescence microscopy. 
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Appendix C: Copyright 
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Copyright permission (Figure 1-1 & 1-6) 
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Copyright permission (Figure 1-2) 



www.manaraa.com

204 
 



www.manaraa.com

205 
 

 
 



www.manaraa.com

206 
 

Copyright permission ( Figure 1-3) 
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Copyright permission (Figure 1-5) 
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Copyright permission (Figure 1-8) 
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Copyright permission (Figure 1-8) 
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Copyright permission (Figure 1-8) 
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Copyright permission (Figure 1-8) 
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Copyright permission (Chapter 2) 
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Copyright permission (Chapter 4) 
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Copyright permission (Chapter 5) 
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